Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(M=\dfrac{x+4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\frac{1}{x-\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}-1}\div\frac{2}{x-1}+\frac{1}{\sqrt{x}+1}.\)
=\(\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}-1}\right)\div\frac{2}{\left(\sqrt{x}-1\right)\times\left(\sqrt{x}+1\right)}+\frac{1}{\sqrt{x}+1}\)
\(=\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\frac{2+\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\times\left(\sqrt{x}+1\right)}\)
\(=\frac{1+x}{\sqrt{x}\times\left(\sqrt{x}-1\right)}\times\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\frac{\left(1+x\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\times\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{1+x}{\sqrt{x}}\)
a.ĐKXĐ;\(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
b.P=\(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)=\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{x-4}\)
=\(\frac{3x-6\sqrt{x}}{x-4}=\frac{3\sqrt{x}.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)=\(\frac{3\sqrt{x}}{\sqrt{x}+2}\)
c.P=2\(\Leftrightarrow\frac{3\sqrt{x}}{\sqrt{x}+2}=2\Leftrightarrow3\sqrt{x}=2\sqrt{x}+\text{4}\)\(\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
Vậy x=16
Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn.
\(P=\dfrac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)
\(\sqrt{x}+2>=2\)
=>\(\dfrac{3}{\sqrt{x}+2}< =\dfrac{3}{2}\)
=>\(-\dfrac{3}{\sqrt{x}+2}>=-\dfrac{3}{2}\)
=>\(P=\dfrac{-3}{\sqrt{x}+2}+1>=-\dfrac{3}{2}+1=-\dfrac{1}{2}\)
Dấu = xảy ra khi x=0
A>0 chứ ko phải x>0