K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DT
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HM
1
DT
0
ND
5
22 tháng 11 2016
Ta xét các trường hợp sau:
+ TH1: abab=1⇔⇔a=b Thì a+2b+2a+2b+2=abab=1
+ TH2: abab<1 ⇔⇔a<b⇔⇔a+2<b+2
a+2b+2a+2b+2 Có phần bù tới 1 là: b−ab+2b−ab+2
abab có phần bù tới 1 là b−abb−ab
Mà b−ab+2b−ab+2<b−abb−ab nên a+2b+2a+2b+2>abab
+TH3: abab>1 ⇔⇔a>b ⇔⇔a+2>b+2
a+2b+2a+2b+2 có phần thừa so với 1 là a−bb+2a−bb+2
abab có phần thừa so với 1 là a−bba−bb
Mà a−bb+2a−bb+2<a−bba−bb nên a+2b+2a+2b+2<abab
Sửa lần cuối bởi BQT: 21 Tháng tư 2014
hình như câu 2 Nguyễn Hoài Linh copy
Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải
Chứng minh bằng phương pháp phản chứng:
Giả sử A ⋮ 121 ∀ n khi đó ta có với n = k( k \(\in\)n) thì:
A = k2 + 3k + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)
Với n = k + 1 thì
A = (k + 1)2 + 3(k + 1) + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)
⇒ (k + 1).(k + 1) + 3k + 3 + 5⋮ 121
⇒ k2 + k + k + 1 + 3k + 3 + 5 ⋮ 121
⇒ (k2 + 3k + 5) + (k + k) + (1 + 3)⋮ 121
⇒ (k2 + 3k + 5) + 2k + 4 ⋮ 121
⇒ 2k + 4 ⋮ 121
⇒ 2.(k + 2) ⋮ 121
⇒ k + 2 ⋮ 121 (1)
Mà ta có: k2 + 3k + 5 ⋮ 121
⇒ k(k + 2) + (k + 2) + 3 ⋮ 121
⇒ (k + 2)(k + 1) + 3 ⋮ 121 (2)
Kết hợp (1) và (2) ta có: 3 ⋮ 121 (vô lý)
Vậy điều giả sử là sai hay
A = n2 + 3n + 5 không chia hết cho 121 với mọi n (đpcm)