K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2015

ABCNMHKIDE

a) Vì BI; CK cùng vuông góc với AM => BI // CK => góc MCK = góc MBI ( 2 góc so le trong)

mà có MB = MC (do M là TĐ của BC)

=> tam giác vuông MCK = MBI (cạnh huyền - góc nhọn)

=> BI = CK ( 2 canh t.ư)

+) tam giác BCK = CBI ( vì:  BC chung; góc BCK = góc CBI; CK = BI)

=> BK = CI (2 cạnh t.ư)

và góc KBC = góc ICB ( 2 góc t.ư) mà 2 góc này ở vị trí SLT => BK // CI

b) Gọi E là trung điểm của MC 

xét tam giác vuông MKC có: KE là trung tuyến ứng với cạnh huyền MC => EK = MC/ 2

Xét tam giác vuông MNC có: NE là trung tuyến ứng với cạnh huyền MC => NE = MC/2

Áp dụng bất đẳng thức tam giác trong tam giác KNE có: KN < EK + NE = MC/ 2 + MC/ 2 = MC 

vậy KN < MC

c) +) ta luôn có: IM = MK (theo câu a) => M là trung điểm của IK 

    +)  Nếu AI = IM  mà A; I; M thẳng hàng => I là trung điểm của AM => BI là trung tuyến của tam giác BAM 

mặt khác, BI vuông góc với AM 

=> BI vừa là đường cao vừa là đường trung tuyến trong tam giác BAM => tam giác BAM cân tại B

=> BA = BM mà BM = MA (do AM là trung tuyến ứng với cạnh huyền BC)

=> tam giác BAM đều => góc BAM = 60o

    +) ta có : MA = MD (gt) mà MA = IM + IA ; IM = MK 

=> MD = MK + IA mà MD = MK + KD (do MI = MK < MA = MD => K nằm giữa M và D)

=> IA = KD 

=> nếu AI = IM => AI = IM = MK = KD

vậy để AI = IM = MK = KD thì tam giác ABC là tam giác vuông có góc B = 60o

d) +) Tam giác MAC = tam giác MDB ( MA = MD ; góc AMC = góc DMB  do đối đỉnh; MC = MB)

=> góc DBC = góc BCA mà 2 góc này ở vị trí SLT => BD // AC

lại có MN vuông góc với AC => MN vuông góc với BD => MN là là đường cao của tam giác BMD

+) Xét tam giác BMD có: BI ; DH ; MN là 3 đường cao => chúng đồng quy => đpcm

8 tháng 5 2022

Trả lời câu hỏi đúng và nhanh, sau đó được giáo viên tick

8 tháng 5 2022

cày.là.có đc 

30 tháng 10 2019

hình như đề sai rồi bạn ơi

30 tháng 10 2019

Sai ở chỗ nào bạn ?

14 tháng 2 2019

anh/chị tự kẻ hình nhé :v

a, t\g BAC vuông cân tại A (gt) 

=> AC = CB (đn) và AC _|_ AB (đn) mà AD đối AC

=> AB _|_ AD  

xét tam giác ACB và tam giác ADB có : AB chung

AC = AD (gt)

AB _|_ AC và AD => góc CAB = góc DAB = 90 

=> tam giác ACB = tam giác ADB (2cgv)

=> BC = DB (đn)

=> tam giác BDC cân tại B (đn)

b, M là trung điểm của BC (gt) => CM = 1/2BC

N là trung điểm của BD (gt) => DN = 1/2DB

mà BC = DB (cmt)

=> CM = DN 

xét tam giác CDM và tam giác DCN có : CD chung

góc MCA = góc ADN do tam giác ACB = tam giác ADB (câu a)

=> tam giác CDM và tam giác DCN (c - g - c)

=> CN = DM (đn)