Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Diện tích của hình chữ nhật (I) là: \(a.c\).
Diện tích của hình chữ nhật (II) là: \(a.d\).
Diện tích của hình chữ nhật (III) là: \(b.c\).
Diện tích của hình chữ nhật (IV) là: \(b.d\).
b) Diện tích hình chữ nhật MNPQ là: \(ac + ad + bc + bd\).
c) Ta có:
\((a + b)(c + d) = a(c + d) + b(c + d) = ac + ad + bc + bd\).
Vậy \((a + b)(c + d)\) = \(ac + ad + bc + bd\).
a)
Diện tích của hình chữ nhật (I) là: \(a.b\).
Diện tích của hình chữ nhật (II) là: \(a.c\).
b) Diện tích của hình chữ nhật MNPQ là: \(ab + ac\).
c) Ta có: \(a(b + c) = a.b + a.c\).
Vậy \(a(b + c)\) = \(ab + ac\).
a) Xét ΔABC có
E là trung điểm của AB(gt)
F là trung điểm của AC(gt)
Do đó: EF là đường trung bình của ΔABC(ĐỊnh nghĩa đường trung bình của tam giác)
Suy ra: EF//BC
hay BEFC là hình thang có hai đáy là EF và BC và FE\(\perp\)AH(đpcm)
a) Thể tích của hình hộp chữ nhật:
\(9\cdot5=45\left(dm^3\right)\)
b) Cạnh đáy của hình hợp chữ nhật:
Ta có: \(9=3\cdot3\)
Nên cạnh đáy bằng 3 cm
Diện tích toàn phần của hình hộp chữ nhật:
\(2\cdot5\cdot\left(3+3\right)=60\left(dm^2\right)\)
Tự vẽ hình nha!
Xét tam giác BMK và tam giác CNK có:
BM=CN (gt)
Góc BKM=góc CKN (hai góc đối đỉnh)
MK=NK (K là trung điểm MN)
=> tam giác BMK=tam giác CNK (c.g.c)
=> BK=CK
=> K là trung điểm BC
=> B,K,C thẳng hàng.
Bài 2:
a: Xét ΔBAD và ΔBHD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔBAD=ΔBHD
b: Ta có: ΔBAD=ΔBHD
nên \(\widehat{BAD}=\widehat{BHD}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BHD}=90^0\)
hay DH\(\perp\)BC
a) Ta có: Diện tích hình chữ nhật MNPQ bằng diện tích hình chữ nhật (I) + diện tích hình chữ nhật (II)
\( = ac + bc = (a + b).c\).
Mà MN = c
Do đó NP = \((a + b).c:c = a + b\).
b) Ta có:
\(\begin{array}{l}(A + B):c = (ac + bc):c = a + b\\A:c + B:c = ac:c + bc:c = a + b\end{array}\)
Vậy \((A + B):c\) =\(A:c + B:c\).