Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
15 phút = (1/4)giờ
Gọi vận tốc của ca nô khi nước đứng yên là x (km/h). Điều kiện x > 2
Vận tốc ca nô khi xuôi dòng là x + 2 (km/h)
Vận tốc ca nô khi ngược dòng là x – 2 (km/h)
Thời gian ca nô khi xuôi dòng là:
Thời gian ca nô khi ngược dòng là:
Ta có phương trình:
Quy đồng mẫu hai vế:
Suy ra:
32x + 64 - 36x + 72 = x2 - 4
⇔ -4x + 136 = x2 - 4
⇔ x2 + 4x - 140 = 0
⇔ (x2 + 4x + 4) - 144 = 0
⇔ (x + 2)2 - 122 = 0
⇔ (x + 14)(x - 10) = 0
Giá trị x = -14 không thỏa mãn điều kiện
Giá trị x = 10 thỏa mãn điều kiện
Vậy vận tốc của ca nô khi nước yên lặng là 10km/h
Dễ lắm bn:
Bài giải:
a) Gọi Vận tốc của ca nô là Vo, vận tốc của dòng nước là Vd
Khi ca nô xuôi dòng
Vo+Vd=120/4=30(km/h)
Khi ca nô ngược dòng
Vo-Vd=120/(4+2)=20(km/h)
Giải hệ pt trên ta được
Vo=25km/h; Vd=5(km/h)
b) Khi ca nô tắt máy đi từ M đến N thì vận tốc lúc này là
Vd=5km/h
Do đó thời gian ca nô tắt máy đi từ M đến N là
T=120/5=24(h).
Đáp số: tự biên tự diễn :D
Gọi vận tốc thực của ca nô là: x (km/giờ) (ĐK: x > 0)
Thời gian đi xuôi dòng là: 9/(2 + x) (giờ)
Thời gian đi ngược dòng là: 8/(2 - x) (giờ)
=> Ta có PT:
\(\frac{8}{\left(2-x\right)}-\frac{9}{\left(2+x\right)}=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\left(\text{TM}\right)\\x=-14\left(\text{loai}\right)\end{cases}}\)
Ta có: 15 phút =\(\frac{1}{4}\)giờ
Gọi vân tốc cano khi nước đứng yên là x,x>0 và tính bằng km/h
Đến đây, có 4 đại lượng biểu diễn là:
-Vận tốc cano xuôi dòng
-Vận tốc cano đi ngược dòng
-Thời gian cano đi xuôi dòng
-Thời gian cano đi ngược dòng
Các đại lượng này được thể hiện trong bảng sau
Xuôi dòng | Ngược dòng | Chênh lệch | |
Vận tốc | x+2 | x-2 | |
Thời gian | \(\frac{9}{x+2}\) | \(\frac{8}{x-2}\) | \(\frac{8}{x-2}-\frac{9}{x+2}\) |
Nhìn vào bảng, ta dễ dàng lập phương trình:
\(\frac{8}{x-2}-\frac{9}{x+2}=\frac{1}{4}\)ĐK: \(x\ne\pm2\)
Mẫu chung là: 4(x-2)(x+2)
Quy đồng và khử mẫu, ta đưa về phương trình
x2+4x-140=0
<=> (x-10)(x+14)=0
<=> x1=10; x2=-14
Giá trị x2=-14 (loại) vì x>0
Vậy vận tốc thực của cano là 10km/h
*Trình bày bài bạn không cần đưa bảng vào nhé*
Gọi vận tốc thực của tàu khi nước yên lặng là x km/h (x>o)
vận tốc của thuyền lúc đi là x-4 km/h
vận tốc của thuyền lúc về là x+4 km/h
thời gian thuyền di đến bến bên kia la 80/(x-4) h
thời gian thuyền di được khi quay về la 80/(x+4) h
vì thời gian cả di lẩn về là 8h20' (hay 25/3 h) nên ta có pt:
80/(x+4) + 80/(x-4) = 25/3
<=> 240x-960+240x+960=25x^2-400
<=> 25x^2-480x-400=0
dental' = (-240)^2 +25*400= 67600 (>0) căn dental'= 240
vậy pt có hai nghiệm
x1= (240-260)/25= -0,8 (loại)
x2=(240+260)/25=20 (nhận)
vậy vận tốc của tàu khi nước yên lặng là 20 km/h
Chúc bạn học tốt!!
Gọi Vriêng(canô) là x(km/h).Điều kiện x>4
Vận tốc xuôi: x+ 4
vận tốc ngược x-4
=> Thời gian xuôi: 80/x+4
Thời gian ngược 72/x-4
Ta có pt: 72/(x-4)-80/(x+4)=0,25
<=>72(x+4)-80(x-4)=0,25(x+4)(x-4)
<=>-8x+608=0,25(x²-16)
<=>-32x+2432=x²-16
<=>x²-36x+68x-2448=0
<=>(x-36)(x+68)=0
Giải pt ta được x= 36 ( thỏa mãn)
vậy vận tốc riêng của ca nô là 36 km/h
ận tốc khi xuôi dòng là 36km/h (vx)
vận tốc dòng nước là 3 km/h
⇒ vận tốc thực của tàu là 36-3=33 km/h (vt)
gọi t là thời gian khi xuôi dòng ; t +\(\frac{2}{3}\)là thời gian khi đi ngươc dòng
ta có AB= vx.t =(vt-3)(t+2323)
⇔ 36t = 30t+20
⇔ 6t = 20
⇔ t=\(\frac{20}{6}\)(h)
⇒ AB=120 (km)
Gọi khoảng cách giữa AB là x(km).
Thời gian cano đi xuôi là: x/30(h)
Vận tốc cano ngược dòng là 20km
Vậy thời gian di ngược là x/20(h)
Thời gian xuôi ít hơn tg ngược 1h20'=4/3h nên ta có pt x/30+4/3=x/20
x = 80