Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé.
K là giao điểm của 2 đường phân giác BD và CE => AK là phân giác của góc A (Vì 3 đường phân giác đồng quy tại 1 điểm)
Mà tam giác ABC cân tại A => Phân giác góc A cũng chính là trung tuyến => AK qua trung điểm của BC
(Hoặc bạn có thể chứng minh cụ thể như sau: Kéo dài AK cắt BC tại M
Xét 2 t.g AMB và AMC có:
- AM chung
- g. BAM = CAM (vì AK là phân giác; K thuộc AM)
-AB = AC (2 cạnh bên của tam giác cân ABC)
=> t.g AMB = t. AMC (C.G.C) => MB = MC => M là trung điểm của BC.)
a) Gọi vở, sách, nút lần lượt là x, y, z
Theo đề, ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x + y + z = 6000
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{6000}{10}=600\)
+) \(\frac{x}{2}=600\Rightarrow x=600.2=1200\)
+)\(\frac{y}{3}=600\Rightarrow y=600.3=1800\)
+) \(\frac{z}{5}=600\Rightarrow z=600.5=3000\)
Vậy các bạn học sinh đó quyên góp được 1200 quyển vở, 1800 quyển sách, 3000 cây bút
b) Thầy cô quyên góp được số quyển sách là:
1800 . 40% = 720 (quyển)
Thầy cô quyên góp được số quyển vở là:
1200 . 50% = 600 (quyển)
Các thầy cô quyên góp được số sách vở là:
720 + 600 = 13200 (quyển)
Vậy các thầy cô quyên góp được 13200 quyển sách, vở
a.Áp dụng tính chất tổng 3 góc trong 1 tam giác ta có:
góc A+góc B+góc C=180
hay 90 +góc B+30=180
góc B=60 độ
Xét tgiac ABH và tgiac ADH có:
AH chung
góc AHB =góc AHD=90
HB=HD(gt)
Vậy tgiac ABH=tgiac ADH(c.g.c)
=> AB=AD(2 cạnh tương ứng)
=>tgiac ABD cân tại A mà có góc B=60 độ
Vậy tgiac ABD đều
b.tgiac ABD đều => góc BAD=60 độ
vậy ta có góc BAD+góc DAC=90
hay 60+góc DAC=90
góc DAC=30 độ
Xét tgiac ADC có góc DAC=góc DCA=30
Vậy tgiac ADC cân tại D=> AD=DC
Xét tgiacADH và tgiac CDE có
góc DEC=góc DHA=90
AD=CD(cmt)
góc CDE=góc ADH(đối đỉnh)
=> tgiac ADH=tgiac CDE(ch-gc)
=> AH= CE(2 cạnh tương ứng)
c.theo câu b ta có DE=DH(2 cạnh tương ứng)
Vậy tgiac DEH cân tại E
=> góc DEH=(180-góc EDH):2 (1)
tgiac DAC cân tại D
=> góc DAC=(180-góc ADC):2 (2)
mà gócADC=gócEDH(đối đỉnh) (3)
từ (1);(2) và (3) ta có góc DEH=góc DAC
mà góc DAC và góc DEH ở vị trí so le trong
Nên theo tiên đề oclit ta có HE//AC
b) \(\sqrt{144}-5.\sqrt{\dfrac{16}{9}}+\left|-5\dfrac{1}{3}\right|\)
=\(12-5.\dfrac{4}{3}+\dfrac{16}{3}\)
=\(12-\left(\dfrac{20}{3}-\dfrac{16}{3}\right)\)
=\(12-\dfrac{4}{3}\)
=\(\dfrac{32}{3}\)
Áp dụng bất đẳng thức |m|+ |n|≥ |m + n| .Dấu = xảy ra khi m,n cùng dấu
A ≥ |x − a + x − b|+ |x − c + x − d| = |2x − a − b|+ |c + d − 2x| ≥ |2x − a − b − 2x + c + d| =|c + d − a − b|
Dấu = xảy ra khi x − a và x − b cùng dấu hay(x ≤ a hoặc x ≥ b)
x − c và x − d cùng dấu hay(x ≤ c hoặc x ≥ d)
2x − a − b và c + d − 2x cùng dấu hay (x + b ≤ 2x ≤ c + d)
Vậy Min A =c+d-a-b khi b ≤ x ≤ c
~ Học tốt ~ K cho mk nha. Thank you.
Lời giải:
Gọi số công nhân mỗi đội lần lượt là $a,b,c$. Vì số công nhân tỉ lệ nghịch với số
ngày làm nên $4a=6b=8c=\frac{a}{\frac{1}{4}}=\frac{b}{\frac{1}{6}}=\frac{c}{\frac{1}{8}}$
Áp dụng TCDTSBN:
$\frac{a}{\frac{1}{4}}=\frac{b}{\frac{1}{6}}=\frac{c}{\frac{1}{8}}=\frac{a-b}{\frac{1}{4}-\frac{1}{6}}=\frac{4}{\frac{1}{12}}=48$
$\Rightarrow a=48.\frac{1}{4}=12; b=48.\frac{1}{6}=8; c=48.\frac{1}{8}=6$