K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 8 2021

MN là đường trung bình tam giác SAB \(\Rightarrow\) MN song song và bằng 1 nửa AB

Gọi P là trung điểm AD \(\Rightarrow PQ||AB\Rightarrow PQ||MN\Rightarrow P\in\left(MNQ\right)\)

\(\Rightarrow\) MNQP là thiết diện của chóp và (MNQ)

Do MN song song PQ \(\Rightarrow\) MNQP là hình thang

Lại có M, P là trung điểm SA, AD \(\Rightarrow MP=\dfrac{1}{2}SD\)

Tương tự \(NQ=\dfrac{1}{2}SC\Rightarrow MP=NQ=\dfrac{b\sqrt{3}}{2}\)

\(\Rightarrow\) Thiết diện là hình thang cân

\(PQ=AB=a\) ; \(MN=\dfrac{1}{2}PQ=\dfrac{a}{2}\)

Kẻ \(MH\perp PQ\Rightarrow PH=\dfrac{PQ-MN}{2}=\dfrac{a}{4}\)

\(\Rightarrow MH=\sqrt{MP^2-PH^2}=\sqrt{\dfrac{3b^2}{4}-\dfrac{a^2}{16}}\)

\(S=\dfrac{1}{2}\left(MN+PQ\right).MH=\dfrac{3a}{4}.\sqrt{\dfrac{3b^2}{4}-\dfrac{a^2}{16}}\)

NV
18 tháng 8 2021

undefined

NV
16 tháng 11 2021

Do vai trò của 3 biến là như nhau, không mất tính tổng quát giả sử \(x>y>z\)

Ta có: \(x-z=\left(x-y\right)+\left(y-z\right)\)

Đặt \(\left\{{}\begin{matrix}x-y=a>0\\y-z=b>0\end{matrix}\right.\)  

Do \(x;z\in\left[0;2\right]\Rightarrow x-z\le2\) hay \(a+b\le2\)

Ta có:

\(P=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{4}{a+b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\)

\(P\ge\dfrac{9}{\left(a+b\right)^2}\ge\dfrac{9}{2^2}=\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=2\\\end{matrix}\right.\) \(\Rightarrow a=b=1\) hay \(\left(x;y;z\right)=\left(0;1;2\right)\) và các hoán vị

16 tháng 11 2021

thầy ơi cho em hỏi:

chỗ dấu >= đầu tiên là thầy dùng bđt bunhacoxki đúng không thầy

38:

a: (SAB) và (SAC) cùng vuông góc (ABC)

(SAB) cắt (SAC)=SA

=>SA vuông góc (ABC)

b: SA vuông góc CH

CH vuông góc AB

=>CH vuông góc (SAB)

=>(SCH) vuông góc (SAB)

26 tháng 8 2021

ai chỉ giúp em vs đi ạ em cần gấp lắm

26 tháng 8 2021

Khoảng cách từ M để ABC bằng MA

Khoảng cách từ EF đến SAB bằng EM = AF

4*cos(pi/6-a)*sin(pi/3-a)

=4*(cospi/6*cosa+sinpi/6*sina)*(sinpi/3*cosa-sina*cospi/3)

=4*(căn 3/2*cosa+1/2*sina)*(căn 3/2*cosa-1/2*sina)

=4*(3/4*cos^2a-1/4*sin^2a)

=3cos^2a-sin^2a

=3(1-sin^2a)-sin^2a

=3-4sin^2a

=>m=3; n=-4

m^2-n^2=-7

Ta có:

\(\dfrac{1}{cos^2x-sin^2x}+\dfrac{2tanx}{1-tan^2x}=\dfrac{1}{cos2x}+tan2x=\dfrac{1}{cos2x}+\dfrac{sin2x}{cos2x}=\dfrac{1+sin2x}{cos2x}=\dfrac{cos2x}{1-sin2x}\)

\(\Rightarrow P=a+b=2+1=3\)

20 tháng 8 2021

1A

2D

3B

20 tháng 8 2021

Viết chi tiết lời giải được không ạ?

20 tháng 8 2021

Câu 1: ĐK: \(x\ne k\pi\)

\(3cotx-\sqrt{3}=0\) \(\Leftrightarrow cotx=\dfrac{\sqrt{3}}{3}\) \(\Leftrightarrow x=\dfrac{1}{3}\pi+k\pi\) 

Chọn B

Câu 2: D 

20 tháng 8 2021

Bạn giải thích kĩ giùm mình được không?

NV
15 tháng 3 2022

3.

\(u_2=\dfrac{1}{2-u_1}=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3}\)

\(u_3=\dfrac{1}{2-u_2}=\dfrac{1}{2-\dfrac{2}{3}}=\dfrac{3}{4}\)

\(u_4=\dfrac{1}{2-\dfrac{3}{4}}=\dfrac{4}{5}\)

4.

\(u_1=\dfrac{2^{1+1}+1}{2^1}=\dfrac{5}{2}\)

\(u_3=\dfrac{2^4+1}{2^3}=\dfrac{17}{8}\)

\(u_5=\dfrac{2^6+1}{2^5}=\dfrac{65}{32}\)

5. Đề bị khuất

15 tháng 3 2022

undefined

27 tháng 10 2021

ko đc chép mạng bạn nhé.