loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 9 2023

Lời giải:
a.  ĐKXĐ: $x>0; x\neq 1$

\(P=\left[\frac{\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}\right].\frac{x+\sqrt{x}}{\sqrt{x}+2}\)

\(=\frac{x+\sqrt{x}+\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}.\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}+2}=\frac{\sqrt{x}(\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+1)}.\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}+2}=\frac{x}{\sqrt{x}-1}\)

b.

$P>2 \Leftrightarrow \frac{x}{\sqrt{x}-1}-2>0$

$\Leftrightarrow \frac{x-2\sqrt{x}+2}{\sqrt{x}-1}>0$

$\Leftrightarrow \frac{(\sqrt{x}-1)^2+1}{\sqrt{x}-1}>0$

$\Leftrightarrow \sqrt{x}-1>0$ (do $(\sqrt{x}-1)^2+1>0$)

$\Leftrightarrow x>1$

Kết hợp đkxđ suy ra $x>1$
c. 

$\frac{1}{P}=\frac{\sqrt{x}-1}{x}$

Áp dụng BĐT Cô-si:

$x+4\geq 4\sqrt{x}\Rightarrow x\geq 4(\sqrt{x}-1)$
$\Rightarrow \frac{\sqrt{x}-1}{x}\leq \frac{\sqrt{x}-1}{4(\sqrt{x}-1)}=\frac{1}{4}$

Vậy $\frac{1}{P}$ max $=\frac{1}{4}$ khi $x=4$

18 tháng 9 2023

em cảm ơn ạ.

NV
6 tháng 3 2023

1.

a. Em tự giải

b.

\(\left\{{}\begin{matrix}2x+y=4m-1\\3x-2y=-m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=8m-2\\3x-2y=-m+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+7\\y=\dfrac{3x+m-9}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=2m-3\end{matrix}\right.\)

Để \(x+y=7\Rightarrow m+1+2m-3=7\)

\(\Rightarrow3m=9\Rightarrow m=3\)

NV
6 tháng 3 2023

2.

a. Em tự giải

b.

Phương trình có 2 nghiệm khi:

\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\)

\(\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)

Ta có:

\(P=x_1^2+x_2^2+8x_1x_2=\left(x_1+x_2\right)^2+6x_1x_2\)

\(=4\left(m+1\right)^2+6\left(2m+10\right)=4m^2+20m+64\)

\(=4\left(m^2+5m+6\right)+40=4\left(m+2\right)\left(m+3\right)+40\)

Do \(\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\) \(\Rightarrow\left(m+2\right)\left(m+3\right)\ge0\)

\(\Rightarrow P\ge40\)

Vậy \(P_{min}=40\) khi \(m=-3\)

(Nếu bài này giải là \(4m^2+20m+64=\left(2m+5\right)^2+39\ge39\) là sai vì dấu = khi đó xảy ra tại \(m=-\dfrac{5}{2}\) ko thỏa mãn điều kiện \(\Delta\) để pt có nghiệm)

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó; MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra MO là đường trung trực của AB

=>MO⊥AB

Xét (O) có

ΔABK nội tiếp

AK là đường kính

Do đó: ΔABK vuông tại B

=>BA⊥BK

mà MO⊥AB

nên MO//BK

b: Gọi E là giao điểm của AM và BK, I là giao điểm của BH và MK

TA có: BA⊥BK

=>BA⊥BE

=>ΔABE vuông tại B

Ta có: \(\hat{MBA}+\hat{MBE}=\hat{ABE}=90^0\)

\(\hat{MAB}+\hat{MEB}=90^0\) (ΔABE vuông tại B)

\(\hat{MAB}=\hat{MBA}\) (ΔMAB cân tại M)

nên \(\hat{MBE}=\hat{MEB}\)

=>MB=ME

mà MA=MB

nên MA=ME(3)

Ta có: BH⊥AK

AE⊥KA

Do đó: BH//AE

Xét ΔKAM có IH//AM

nên \(\frac{IH}{AM}=\frac{KI}{KM}\left(4\right)\)

Xét ΔKME có IB//ME

nên \(\frac{IB}{ME}=\frac{KI}{KM}\left(5\right)\)

Từ (3),(4),(5) suy ra IH=IB

=>I là trung điểm của BH

8 tháng 8 2023

Chắc câu c quá, tại tổng 2 ô vuông của hình chữ nhật có 10 chấm tròn. =)

8 tháng 8 2023

Em nghĩ là câu c vì thấy tổng của các chấm tròn ở mỗi miếng đều là 10.

a: Xét (O) có

CM,CA là các tiếp tuyến

Do đó: CM=CA và OC là phân giác của góc MOA

Xét (O) có

DM,DB là các tiếp tuyến

Do đó: DM=DB và OD là phân giác của góc MOB

Ta có: CM+MD=CD
mà CM=CA và DM=DB

nên CA+BD=CD
b: OC là phân giác của góc MOA

=>\(\hat{MOA}=2\cdot\hat{MOC}\)

OD là phân giác của góc MOB

=>\(\hat{MOB}=2\cdot\hat{MOD}\)

Ta có: \(\hat{MOA}+\hat{MOB}=180^0\) (hai góc kề bù)

=>\(2\left(\hat{MOC}+\hat{MOD}\right)=180^0\)

=>\(2\cdot\hat{COD}=180^0\)

=>\(\hat{COD}=90^0\)

c: Ta có: MH⊥AB

AC⊥BA

DB⊥BA

DO đó: MH//AC//BD

Xét ΔCDB có MI//DB

nên \(\frac{CI}{IB}=\frac{CM}{MD}=\frac{CA}{BD}\)

Xét ΔICA và ΔIBD có

\(\frac{IC}{IB}=\frac{CA}{BD}\)

góc ICA=góc IBD(Hai góc so le trong, AC//BD)

Do đó: ΔICA~ΔIBD

=>\(\hat{CIA}=\hat{BID}\)

\(\hat{CIA}+\hat{AIB}=180^0\) (hai góc kề bù)

nên \(\hat{BID}+\hat{AIB}=180^0\)

=>A,I,D thẳng hàng

Gọi F là giao điểm của AM và BD

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>BM⊥AF tại M

=>ΔBMF vuông tại M

Ta có: \(\hat{DMB}+\hat{DMF}=\hat{FMB}=90^0\)

\(\hat{DBM}+\hat{DFM}=90^0\) (ΔFMB vuông tại M)

\(\hat{DMB}=\hat{DBM}\)

nên \(\hat{DMF}=\hat{DFM}\)

=>DM=DF
mà DM=DB

nên DF=DB(1)

Xét ΔADB có IH//DB

nên \(\frac{IH}{DB}=\frac{AI}{AD}\left(2\right)\)

Xét ΔADF có MI//DF
nên \(\frac{MI}{DF}=\frac{AI}{AD}\) (3)

Từ (1),(2),(3) suy ra IH=MI

=>I là trung điểm của MH

d: Xét ΔBAC có IH//AC
nên \(\frac{IH}{AC}=\frac{BI}{BC}\left(4\right)\)

Xét ΔBEC có MI//EC
nên \(\frac{MI}{EC}=\frac{BI}{BC}\left(5\right)\)

Từ (4),(5) suy ra \(\frac{IH}{AC}=\frac{MI}{EC}\)

mà IH=IM

nên AC=EC

=>C là trung điểm của AE


a: Xét ΔMAB vuông tại A và ΔMDE vuông tại M có

MA=MD

\(\hat{AMB}=\hat{DME}\) (hai góc đối đỉnh)

Do đó: ΔMAB=ΔMDE

=>AB=DE

BC=AB+CD

=>BC=DE+DC=CE

=>ΔCBE cân tại C

b: Kẻ MK⊥BC tại K

ΔCBE cân tại C

=>\(\hat{CBE}=\hat{CEB}\)

\(\hat{CEB}=\hat{ABE}\) (hai góc so le trong, AB//CD)

nên \(\hat{CBE}=\hat{ABE}\)

=>BE là phân giác của góc ABC

Xét ΔBAM vuông tại A và ΔBKM vuông tại K có

BM chung

\(\hat{ABM}=\hat{KBM}\)

Do đó: ΔBAM=ΔBKM

=>MA=MK

=>MA=MK=MD

=>K nằm trên đường tròn đường kính AD

Xét (M) có

MK là bán kính

BC⊥MK tại K

Do đó: BC là tiếp tuyến của (M)

=>BC là tiếp tuyến của đường tròn đường kính AD

NV
20 tháng 1 2024

a. Câu này đơn giản em tự giải

b.

Xét hai tam giác OIM và OHN có:

\(\left\{{}\begin{matrix}\widehat{OIM}=\widehat{OHN}=90^0\\\widehat{MON}\text{ chung}\\\end{matrix}\right.\) \(\Rightarrow\Delta OIM\sim\Delta OHN\left(g.g\right)\)

\(\Rightarrow\dfrac{OI}{OH}=\dfrac{OM}{ON}\Rightarrow OI.ON=OH.OM\)

Cũng từ 2 tam giác đồng dạng ta suy ra \(\widehat{OMI}=\widehat{ONH}\)

Tứ giác OAMI nội tiếp (I và A cùng nhìn OM dưới 1 góc vuông)

\(\Rightarrow\widehat{OAI}=\widehat{OMI}\)

\(\Rightarrow\widehat{OAI}=\widehat{ONH}\) hay \(\widehat{OAI}=\widehat{ONA}\)

c.

Xét hai tam giác OAI và ONA có:

\(\left\{{}\begin{matrix}\widehat{OAI}=\widehat{ONA}\left(cmt\right)\\\widehat{AON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAI\sim\Delta ONA\left(g.g\right)\)

\(\Rightarrow\dfrac{OA}{ON}=\dfrac{OI}{OA}\Rightarrow OI.ON=OA^2=OC^2\) (do \(OA=OC=R\))

\(\Rightarrow\dfrac{OC}{ON}=\dfrac{OI}{OC}\)

Xét hai tam giác OCN và OIC có:

\(\left\{{}\begin{matrix}\dfrac{OC}{ON}=\dfrac{OI}{OC}\\\widehat{CON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OCN\sim\Delta OIC\left(g.g\right)\)

\(\Rightarrow\widehat{OCN}=\widehat{OIC}=90^0\) hay tam giác ACN vuông tại C

\(\widehat{ABC}\) là góc nt chắn nửa đường tròn \(\Rightarrow BC\perp AB\)

Áp dụng hệ thức lượng trong tam giác vuông ACN với đường cao BC:

\(BC^2=BN.BA=BN.2BH=2BN.BH\) (1)

O là trung điểm AC, H là trung điểm AB \(\Rightarrow OH\) là đường trung bình tam giác ABC

\(\Rightarrow OH=\dfrac{1}{2}BC\)

Xét hai tam giác OHN và EBC có:

\(\left\{{}\begin{matrix}\widehat{OHN}=\widehat{EBC}=90^0\\\widehat{ONH}=\widehat{ECB}\left(\text{cùng phụ }\widehat{IEB}\right)\end{matrix}\right.\)  \(\Rightarrow\Delta OHN\sim\Delta EBC\left(g.g\right)\)

\(\Rightarrow\dfrac{OH}{EB}=\dfrac{HN}{BC}\Rightarrow HN.EB=OH.BC=\dfrac{1}{2}BC^2\)

\(\Rightarrow BC^2=2HN.EB\) (2)

(1);(2) \(\Rightarrow BN.BH=HN.BE\)

\(\Rightarrow BN.BH=\left(BN+BH\right).BE\)

\(\Rightarrow\dfrac{1}{BE}=\dfrac{BN+BH}{BN.BH}=\dfrac{1}{BH}+\dfrac{1}{BN}\) (đpcm)

NV
20 tháng 1 2024

loading...

3 tháng 8 2023

Đáp án b

Các hình màu xanh là phản chiếu của các hình máu cam trong gương.

3 tháng 8 2023

Nhìn sơ sơ đoán là chọn B

Kiểu 2 hình ở gần (đáy hình cam trên và đỉnh hình xanh dưới sẽ giống nhau), 2 hình còn lại giống nhau tại vị trí đỉnh trên hình cam và đáy dưới hình xanh