Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhờ các bạn giúp. Mình cần gấp. Cảm ơn!
Bài 1; Cho biểu thức: B= (x2 +1)(y2 + 1) - (x+4)(x-4) - (y-5)(y+5)
a) CMR: B 42 với mọi giá trị của x và y
b) Tìm x và y để B= 42
Giải:
a) B = (x2 +1)(y2 + 1) - (x+4)(x-4) - (y-5)(y+5)
B = \(x^2y^2+x^2+y^2+1-x^2+16-y^2+25\)
B = \(x^2y^2+42\ge42\) với mọi x , y
b) Để B = 42 \(\Rightarrow\) x2y2 + 42 = 0 \(\Rightarrow\) x2y2 = 0 \(\Rightarrow\) x = y = 0
Bài 2:
a) Tìm GTNN của A= (x- 1)(x+ 2)(x+ 3)(x+6)
b) Tìm GTNN cuả B= 3xy(x+ 3y) - 2xy(x+4y) - x2(y-1) + y2(1-x) + 36
Giải:
a) A = (x-1)(x+2)(x+3)(x+6)
A = (x2 + 5x - 6)(x2 + 5x + 6)
A = ( x2 + 5x )2 - 36 \(\ge\) -36 với mọi x
Dấu " = " xảy ra khi x2 + 5x = 0
x ( x + 5 ) = 0
\(\Rightarrow\) \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
MinA = -36 khi và chỉ khi x = 0 hoặc x = -5
b) Chịu :))
Bài 1:
a) \(\left(x^2+1\right)\left(y^2+1\right)-\left(x+4\right)\left(x-4\right)-\left(y-5\right)\left(y+5\right)\)
\(=x^2y^2+x^2+y^2+1-x^2+16-y^2+25\)
\(=x^2y^2+42\ge42\forall x\) (đpcm)
b) Để B = 42 thì \(x^2y^2+42=42\)
\(\Leftrightarrow x^2y^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(a,VP=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\\ =\left(x+2y\right)\left[x^2-x.2y+\left(2y\right)^2\right]\\ =x^3+\left(2y\right)^3=x^3+8y^3=VT\left(đpcm\right)\\ b,VT=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\left(x-y\right)\\ =x^3-y^3-3xy\left(x-y\right)\\ =x^3-3x^2y+3xy^2-y^3\\ =\left(x-y\right)^3=VP\left(đpcm\right)\)
\(c,VT=\left(x-3y\right)\left(x^2+3xy+9y^2\right)-\left(3y+x\right)\left(9y^2-3xy+x^2\right)\\ =\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]-\left(x+3y\right).\left[x^2-x.3y+\left(3y\right)^2\right]\\ =x^3-27y^3-\left(x^3+27y^3\right)\\ =-54y^3=VP\left(đpcm\right)\)
1)
\((x+2)(x+3)(x+4)(x+5)-24\\=[(x+2)(x+5)]\cdot[(x+3)(x+4)]-24\\=(x^2+7x+10)(x^2+7x+12)-24\)
Đặt \(x^2+7x+10=y\), khi đó biểu thức trở thành:
\(y(y+2)-24\\=y^2+2y-24\\=y^2+2y+1-25\\=(y+1)^2-5^2\\=(y+1-5)(y+1+5)\\=(y-4)(y+6)\\=(x^2+7x+10-4)(x^2+7x+10+6)\\=(x^2+7x+6)(x^2+7x+16)\)
2) Bạn xem lại đề!
Bài 1:
b: \(=\left(x-2y\right)\left(x+2y\right)+4\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+4\right)\)
c: \(=\left(x+y-3\right)\left(x+y+3\right)\)
Bài 1:
a: \(3xy^2-12x=3x\left(y^2-4\right)=3x\left(y-2\right)\left(y+2\right)\)
b: \(x^2-4y^2+4x+8y\)
\(=\left(x-2y\right)\left(x+2y\right)+4\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+4\right)\)
\(B=3xy\left(x+3y\right)-2xy\left(x+4y\right)-x^2\left(y-1\right)+y^2\left(1-x\right)+36\)
\(=3x^2y+9xy^2-2x^2y-8xy^2-x^2y+x^2+y^2-xy^2+36\)
\(=x^2+y^2+36\)
Ta có: \(\left\{{}\begin{matrix}x^2\ge0\\y^2\ge0\end{matrix}\right.\Leftrightarrow x^2+y^2\ge0\)
\(\Leftrightarrow B=x^2+y^2+36\ge36\)
Dấu " = " khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow x=y=0\)
Vậy \(MIN_B=36\) khi x = y = 0
\(B=3xy\left(x+3y\right)-2xy\left(x+4y\right)-x^2\left(y-1\right)+y^2\left(1-x\right)+36\)
\(B=3x^2y+9xy^2-2x^2y-8xy^2-x^2y+x^2+y^2-xy^2+36\)
\(B=x^2+y^2+36\ge36\)
Vậy \(Bmin=36\Leftrightarrow x=y=0\)