\(\frac{2\sqrt{x}}{\sqrt{x}+3}\)+\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

b. \(Q=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{3\sqrt{x}}{\sqrt{x}-3}\)

c. Để \(Q< 1\Rightarrow Q-1< 0\Leftrightarrow\frac{3\sqrt{x}-\sqrt{x}+3}{\sqrt{x}-3}< 0\Leftrightarrow\frac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Rightarrow\sqrt{x}-3< 0\Rightarrow0\le x< 9\)

Vậy \(0\le x< 9\)thì \(Q< 1\)

11 tháng 7 2016

Không rút gọn được bạn ơi!!! ^^

1 tháng 8 2017

ĐK  \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a. Ta có \(P=\frac{\sqrt{x}-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{3}=\frac{\sqrt{x}}{\sqrt{x}+3}\)

b.Để \(P< 0,5\Rightarrow\frac{\sqrt{x}}{\sqrt{x}+3}-0,5< 0\Leftrightarrow\frac{2\sqrt{x}-\sqrt{x}-3}{2\cdot\left(\sqrt{x}+3\right)}< 0\)

\(\Leftrightarrow\frac{\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}< 0\Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow0\le x< 9\)

Vậy \(0\le x< 9\)thì \(P< 0,5\)

c. Để \(P=\frac{1}{2\sqrt{x}}\Rightarrow\frac{\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2\sqrt{x}}\Leftrightarrow2x-\sqrt{x}-3=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=\frac{3}{2}\\\sqrt{x}=-1\left(l\right)\end{cases}\Leftrightarrow x=\frac{9}{4}\left(tm\right)}\)

Vậy \(x=\frac{9}{4}\)  

1 tháng 8 2017

các bạn sửa lại giúp mình đề bài  ở  đoạn P=.........-(1/căn x) thành P=.......+(1/căn x) với nha cảm ơn nhiều XD