Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 3^n chia hết cho 3
18 chia hết cho 3
=> 3^n+18 luôn chia hết cho 3 với mọi người
=> Không có số thoả mãn để 3^n+18 là số nguyên tố
Vậy không số nào thỏa mãn
Lời giải:
a.
Nếu $n=0$ thì $2^n+22=23$ là snt (thỏa mãn)
Nếu $n>0$ thì $2^n$ chẵn, $22$ chẵn
$\Rightarrow 2^n+22$ chẵn. Mà $2^n+22>2$ nên không thể là snt (trái đề bài)
Vậy $n=0$
b. $13n$ là snt khi $n<2$
Mà $n$ là snt nên $n=0,1$. Nếu $n=0$ thì $13n=0$ không là snt
Nếu $n=1$ thì $13n=13$ là snt (tm)
a) Để \(A\)là phân số thì \(\left(n+4\right)\ne0\)
b) Để \(A\)là số nguyên tthì \(3\)phải chia hết cho \(n+4\)\(\Rightarrow\)\(\left(n+4\right)\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Do đó :
\(n+4=1\Rightarrow n=1-4=-3\)
\(n+4=-1\Rightarrow n=-1-4=-5\)
\(n+4=3\Rightarrow n=3-4=-1\)
\(n+4=-3\Rightarrow n=-3-4=-7\)
Vậy \(n\in\left\{-3;-5;-1;-7\right\}\)thì \(A\)là số nguyên
ta có : các số có hai chữ số với số đầu là 2 là: 20, 21, 22, 23, 24, 25, 26, 27, 28. 29
a/ Vì n là số ng tố nên Ư(2*)=nó và 1 => *= 23, 29
b/ Vì n là hợp số nên * là những số còn lại.