Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau bn nhớ bổ sung thêm đề nhé! Lần này mình sẽ xem như đề là tìm GTLN
\(12x-4x^2+9=-\left(4x^2-12x+9\right)+18=-\left(2x-3\right)^2+18\le18\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{2}\)
Xin lỗi bạn nha đề của mình là phân tích đa thức thành nhân tử. Sorry bạn!
a) Đặt \(a=x^2+x\)
Đa thức trở thành: \(a^2-14a+24=\left(a^2-14a+49\right)-25=\left(a-7\right)^2-25=\left(a-7-5\right)\left(a-7+5\right)=\left(a-12\right)\left(a-2\right)\)
Thay a:
\(\left(a-12\right)\left(a-2\right)=\left(x^2+x-12\right)\left(x^2+x-2\right)\)
b) Đặt \(a=x^2+x\)
Đa thức trở thành:
\(\left(x^2+x\right)^2+4x^2+4x-12=\left(x^2+x\right)^2+4\left(x^2+x\right)-12=a^2+4a-12=\left(a^2+4x+4\right)-16=\left(a+2\right)^2-16=\left(a+2-4\right)\left(a+2+4\right)=\left(a-2\right)\left(a+6\right)\)
Thay a:
\(\left(a-2\right)\left(a+6\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
Câu 14;
a: ĐKXĐ: x<>2
b: \(\dfrac{x^2-4}{x-2}=x+2\)
c: Thay x=1 vào x+2, ta được:
x+2=1+2=3
Đề thiếu ko nhỉ? cộng b^2 nữa chứ
\(\left(a-b\right)\left(a-2b\right)\left(a-3b\right)\left(a-4b\right)+b^2\)
\(=\left[\left(a-b\right)\left(a-4b\right)\right]\left[\left(a-2b\right)\left(a-3b\right)\right]+b^2\)
\(=\left(a^2-4ab-ab+4b^2\right)\left(a^2-3ab-2ab+6b^2\right)+b^2\)
\(=\left(a^2-5ab+4b^2\right)\left(a^2-5ab+6b^2\right)+b^2=\left(a^2-5ab+5b^2\right)^2-b^2+b^2\)
\(=\left(a^2-5ab+b^2\right)^2\rightarrowđpcm\)
áp dụng đl ta-lét vào tam giác có:
\(\dfrac{BC}{CA}=\dfrac{DE}{EA}=\dfrac{BC}{5}=\dfrac{3}{8}=>BC=\dfrac{3}{8}.5=\dfrac{15}{8}=1,875\)
X = BC + CA = 1,875 + 5 = 6,875
\(A=-x^2+3x-7\)
\(=-\left(x^2-3x+7\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}< 0\forall x\)
\(3x-7-x^2=-\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{19}{4}=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}\le-\dfrac{19}{4}< 0\)
Câu 3:
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
b: \(A=\dfrac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x+2}{x-2}\)
Câu 1:
a: \(\left(x-3\right)^2=x^2-6x+9\)
bL \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)
câu 6 :
Q = \(\dfrac{2x^2+2}{\left(x+1\right)^2}\)
Đặt x + 1 = t
=> x = t - 1
\(\Rightarrow Q=\dfrac{2\left(t-1\right)^2+2}{t^2}\)
\(\Rightarrow Q=\dfrac{2t^2-4t+2+2}{t^2}\)
\(\Rightarrow Q=\dfrac{2t^2-4t+4}{t^2}=\dfrac{2t^2}{t^2}-\dfrac{4t}{t^2}+\dfrac{4}{t^2}\)
\(\Rightarrow Q=2-\dfrac{4}{t}+\dfrac{4}{t^2}=1+\left(1-\dfrac{4}{t}+\dfrac{4}{t^2}\right)\)
\(\Rightarrow Q=1+\left(1-\dfrac{2}{t}\right)^2\ge1\) Vì \(\left(1-\dfrac{2}{t}\right)^2\ge0\)
Vậy GTNN của Q là 1
Dấu = xảy ra :\(\Leftrightarrow\left(1-\dfrac{2}{t}\right)^2=0\Leftrightarrow\left(1-\dfrac{2}{x+1}\right)=0\Leftrightarrow\dfrac{2}{x+1}=1\Leftrightarrow x+1=2\Leftrightarrow x=1\)
quá là gấp r ạ phiền mn nhanh nhanh giúp em ạ