K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2023

Độ lệch pha giữa gia tốc và vận tốc là \(\dfrac{\pi}{2}\).

HQ
Hà Quang Minh
Giáo viên
27 tháng 8 2023

Pha của li độ và gia tốc của một dao động cùng pha với nhau

HQ
Hà Quang Minh
Giáo viên
5 tháng 11 2023

a) Dao động 1 (đường màu xanh) có:

- Biên độ: A1 = 3 cm

- Chu kì: T = 6 s

- Tần số: \(f=\dfrac{1}{T}=\dfrac{1}{6}\left(Hz\right)\)

Dao động 2 (đường màu đỏ) có:

- Biên độ: A2 = 4 cm

- Chu kì: T = 6 s

- Tần số: \(f=\dfrac{1}{T}=\dfrac{1}{6}\left(Hz\right)\)

b) Hai dao động có cùng chu kì nên \(\omega=\dfrac{2\pi}{T}=\dfrac{2\pi}{6}=\dfrac{\pi}{3}\left(rad/s\right)\)

Độ lệch thời gian của hai dao động khi cùng trạng thái: \(\Delta t=2,5s\)

Độ lệch pha: \(\Delta\varphi=\omega.\Delta t=\dfrac{\pi}{3}\cdot2,5=150^o\)

HQ
Hà Quang Minh
Giáo viên
5 tháng 11 2023

c) Tại thời điểm 3,5 s vật 2 đang ở VTCB nên vận tốc cực đại:

\(v=\omega A_2=\text{ }\dfrac{\pi}{3}\cdot4=\dfrac{4\pi}{3}\left(cm/s\right)\)

d) Tại thời điểm 1,5 s vật 1 đang ở biên dương nên gia tốc có giá trị:

\(a=-\omega^2A_1=-\dfrac{\pi^2}{9}\cdot3=-\dfrac{\pi^2}{3}\left(cm/s^2\right)\)

Độ lớn gia tốc khi đó là \(\dfrac{\pi^2}{3}cm/s^2\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 8 2023

a) Hình dạng đồ thị gia tốc – thời gian của vật là dạng hình sin.
b) Chu kì của gia tốc của vật là T=0,66 s.
c) Mối liên hệ giữa gia tốc cực đại và biên độ của vật là khi gia tốc đạt giá trị cực đại khi ở vị trí biên và cực tiểu khi ở vị trí cân bằng.
d) Độ lệch pha của gia tốc so với li độ của vật là π.

HQ
Hà Quang Minh
Giáo viên
27 tháng 8 2023

a) Hình dạng đồ thị vận tốc – thời gian của vật là dạng hình sin.
b) Chu kì của vận tốc của vật T=0,66 s.
c) Mối liên hệ giữa tốc độ cực đại và biên độ của vật: khi vận tốc cực đại thì biên độ cực tiểu và ngược lại.
d) Độ lệch pha của vận tốc so với li độ của vật là \(\dfrac{\pi}{2}\)

8 tháng 11 2023

Phương trình: \(x=2cos\left(5\pi t-\dfrac{\pi}{4}\right)\)

a)Biên độ: \(A=2cm\)

Chu kì: \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{5\pi}=0,4s\)

Tần số: \(f=\dfrac{1}{T}=\dfrac{1}{0,4}=2,5Hz\)

Chiều dài quỹ đạo: \(L=2A=2\cdot2=4cm\)

b)Phương trình chất điểm:

Vận tốc: \(v=-\omega Asin\left(\omega t+\varphi\right)=-10\pi sin\left(5\pi t-\dfrac{\pi}{4}\right)\)

Gia tốc: \(a=-\omega^2Acos\left(\omega t+\varphi\right)=-500cos\left(5\pi t-\dfrac{\pi}{4}\right)\)

c)Em thay giá trị \(t=0,2s\) vào từng pt nhé.

20 tháng 12 2023

Tại sao gia tốc lại bằng 250căn2loading...  

HQ
Hà Quang Minh
Giáo viên
5 tháng 11 2023

Từ đồ thị ta xác định được A = 1cm

Ta có: vmax = ωA⇒ω = 4 (rad/s)

Phương trình li độ của dao động: x = cos(4t) (cm)

Phương trình vận tốc của dao động: v = 4cos(4t+\(\frac{\pi }{2}\)) (cm/s)

Phương trình gia tốc của vật dao động: a = 16cos(4t) (m/s2)

18 tháng 8 2023

Phương trình vận tốc:

\(v=-4\pi\cdot5sin4\pi t=20\pi cos\left(4\pi t+\dfrac{\pi}{2}\right)\left(cm/s\right)\)

Phương trình gia tốc:

\(a=-\omega^2x=-\left(4\pi\right)^2\cdot5cos4\pi t=80\pi^2cos\left(4\pi t+\pi\right)\left(cm/s^2\right)\)

Giả sử pt dao động của vật có dạng:

\(x=Acos\left(5t+\varphi\right)\left(cm\right)\)

\(\Rightarrow v=-5Asin\left(5t+\varphi\right)=5Acos\left(\dfrac{\pi}{2}+5t+\varphi\right)\left(\text{cm/s}\right)\)

Tại \(t=0:\)\(\left\{{}\begin{matrix}x=-2\left(cm\right)\\v=10\left(\text{cm/s}\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_0=Acos\varphi=-2\left(cm\right)\\v_0=5Acos\left(\dfrac{\pi}{2}+\varphi\right)=10\left(\text{cm/s}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}cos\varphi=-\dfrac{2}{A}\left(1\right)\\5A\left(cos\dfrac{\pi}{2}.cos\varphi-sin\dfrac{\pi}{2}.sin\varphi\right)=10\end{matrix}\right.\)

\(\Rightarrow5A.\left(-sin\varphi\right)=10\Leftrightarrow sin\varphi=\dfrac{-2}{A}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\varphi=\dfrac{-3\pi}{4}\left(rad\right);A=2\sqrt{2}\left(cm\right)\)

Vậy ta có ptdđ của vật: \(x=2\sqrt{2}cos\left(5t-\dfrac{3\pi}{4}\right)\left(cm\right)\)

b)\(v_{max}=\omega A=5A=10\sqrt{2}\left(\text{cm/s}\right)\)

\(a_{max}=\omega^2A=50\sqrt{2}\left(\text{cm/s}^2\right)\)

c) \(\alpha=\Delta t.\omega=1,4\pi.5=7\pi\left(rad\right)=6\pi+\pi\left(rad\right)\)

\(\Rightarrow S=3.4A+2\sqrt{2}-2+2\sqrt{2}+2=12A+4\sqrt{2}=28\sqrt{2}\left(cm\right)\)