\(\left\{{}\begin{matrix}sinA=\frac{cosA+cosB}{sinB+sinC}\\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 5 2019

\(2sinB.sinC=1+cosA\Leftrightarrow cos\left(B-C\right)-cos\left(B+C\right)=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)+cosA=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)=1\)

\(\Rightarrow B-C=0\Rightarrow B=C\)

\(sinA=\frac{cosA+cosB}{sinB+sinC}=\frac{cosA+cosB}{2sinB}\) (do \(B=C\))

\(\Leftrightarrow2sinA.sinB=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)-cos\left(A+B\right)=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)+cosC=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)+cosB=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)=cosB\)

\(\Rightarrow A-B=B\Rightarrow A=2B=B+C\)

\(A+B+C=180^0\Rightarrow2A=180^0\Rightarrow A=90^0\)

\(\Rightarrow\Delta ABC\) vuông cân tại A

27 tháng 4 2021

TL:

sinA+sinB+sinC=1-cosA+cosB+cosC => Tam giác ABC Vuông tại A

27 tháng 4 2021

Vế trái = sinA + sinB + sinC

= 2sin(A + B)/2.cos(A - B)/2 + 2sinC/2.cosC/2

= 2cosC/2.cos(A - B)/2 + 2sinC/2.cosC/2

= 2cosC/2[cos(A - B)/2 + sinC/2]

=2.cosC/2.[cos(A - B)/2 + cos(A + B)/2]

= 4.cosC/2.cosB/2.cosA/2

Vế phải = 1 - cosA + cosB + cosC

= 2sin²A/2 + 2cos(B + C)/2.cos(B - C)/2

= 2.sinA/2[sinA/2 + cos(B - C)/2] (vì cos(B + C)/2 = sinA/2)

= 2.sinA/2[cos(B + C)/2 + cos(B - C)/2

= 4.sinA/2.cosB/2.cosC/2

Vậy sinA + sinB + sinC = 1 - cosA + cosB + cosC

<=> cosA/2.cosB/2.cosC/2 = sinA/2.cosB/2.cosC/2

<=> cosB/2.cosC/2(sinA/2 - cosA/2) = 0

mà cosB/2 ≠ 0 và cosC/2 ≠ 0

=> sinA/2 = cosA/2

<=> A/2 = 45o

<=> A = 90o

tam giác ABC vuông tại A

NV
5 tháng 5 2019

\(sin^4x+cos^4x=sin^4x+cos^4x+2sin^2x.cos^2x-2sin^2x.cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}\left(2sinx.cosx\right)^2\)

\(=1-\frac{1}{2}sin^22x\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=2\end{matrix}\right.\) \(\Rightarrow a+3b+c=?\)

\(\frac{sin\left(A-B\right)}{sinC}=\frac{sin\left(A-B\right).sinC}{sin^2C}=\frac{sin\left(A-B\right).sin\left(A+B\right)}{sin^2C}=\frac{-\frac{1}{2}\left(cos2A-cos2B\right)}{sin^2C}\)

\(=\frac{-\frac{1}{2}\left(1-2sin^2A-1+2sin^2B\right)}{sin^2C}=\frac{sin^2A-sin^2B}{sin^2C}=\frac{\left(\frac{a}{2R}\right)^2-\left(\frac{b}{2R}\right)^2}{\left(\frac{c}{2R}\right)^2}=\frac{a^2-b^2}{c^2}\)

NV
5 tháng 5 2019

Câu 3:

a/ Đề dị dị, là \(\frac{cosA+cosB}{sinB+sinC}\) hay \(\frac{cosB+cosC}{sinB+sinC}\) bạn?

b/ \(cos\left(B-C\right)-cos\left(B+C\right)=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)+cosA=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)=1\)

\(\Rightarrow B=C\Rightarrow\Delta ABC\) cân tại A

NV
2 tháng 6 2020

\(A=cos^2a+cos^2b+2cosa.cosb+sin^2a+sin^2b+2sina.sinb\)

\(=cos^2a+sin^2a+cos^2b+sin^2b+2\left(cosa.cosb+sina.sinb\right)\)

\(=2+2cos\left(a-b\right)=2+2cos\frac{\pi}{3}=3\)

\(\left(cosa+sina\right)^2=\frac{36}{25}\Leftrightarrow1+2sina.cosa=\frac{36}{25}\)

\(\Rightarrow sin2a=\frac{36}{25}-1=\frac{11}{25}\)

\(cos2a=cos^2a-sin^2a=\left(cosa-sina\right)\left(cosa+sina\right)>0\)

\(\Rightarrow cos2a=\sqrt{1-sin^22a}=\frac{6\sqrt{14}}{25}\)

NV
15 tháng 2 2019

\(\dfrac{cosa+cos5a+cos3a}{sina+sin5a+sin3a}=\dfrac{2cos3a.cos2a+cos3a}{2sin3a.cos2a+sin3a}\)

\(=\dfrac{cos3a\left(2cos2a+1\right)}{sin3a\left(2cos2a+1\right)}=\dfrac{cos3a}{sin3a}=cot3a\)

\(\left(\dfrac{cosa}{sinb}+\dfrac{sina}{cosb}\right)\left(\dfrac{1-cos4b}{cos\left(a-b\right)}\right)=\dfrac{\left(cosa.cosb+sina.sinb\right)}{sinb.cosb}.\dfrac{2sin^22b}{cos\left(a-b\right)}\)

\(=\dfrac{cos\left(a-b\right)}{\dfrac{1}{2}sin2b}.\dfrac{2sin^22b}{cos\left(a-b\right)}=4sin2b\)

15 tháng 2 2019

Bạn ơi mình khong hiểu sao đoạn ( 1/cos4b)/ cos(a-b) lại tách thành 2sin^22b / cos(a-b)

AH
Akai Haruma
Giáo viên
5 tháng 7 2019

Lời giải:

Áp dụng 1 số công thức lượng giác:
\(\sin A=\frac{\sin B+\sin C}{\cos B+\cos C}=\frac{2\sin (\frac{B+C}{2})\cos (\frac{B-C}{2})}{2\cos (\frac{B+C}{2})\cos (\frac{B-C}{2})}=\frac{\sin \frac{B+C}{2}}{\cos \frac{B+C}{2}}\)

\(=\tan \frac{B+C}{2}=\tan (\frac{\pi-A}{2})=\cot \frac{A}{2}\)

\(\Leftrightarrow 2\sin \frac{A}{2}\cos \frac{A}{2}=\frac{\cos \frac{A}{2}}{\sin \frac{A}{2}}\) (trong tam giác, \(\widehat{A}\neq 0\rightarrow \sin \frac{A}{2}\neq 0)\)

\(\Leftrightarrow \cos \frac{A}{2}(2\sin^2 \frac{A}{2}-1)=0\)

\(\Rightarrow \left[\begin{matrix} \cos \frac{A}{2}=0\rightarrow \frac{\widehat{A}}{2}=\frac{\pi}{2}\rightarrow \widehat{A}=\pi (\text{vô lý})\\ \sin \frac{A}{2}=\frac{1}{\sqrt{2}}\rightarrow \frac{\widehat{A}}{2}=\frac{\pi}{4}\rightarrow \widehat{A}=\frac{1}{2}\pi=90^0 \end{matrix}\right.\)

Do đó tam giác ABC vuông tại A