K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NV
1
NV
Nguyễn Việt Lâm
Giáo viên
24 tháng 6 2021
\(sin^2\dfrac{A}{2}=\dfrac{b-c}{2b}\)
\(\Leftrightarrow\dfrac{1-cosA}{2}=\dfrac{b-c}{2b}\)
\(\Leftrightarrow1-\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{b-c}{b}=1-\dfrac{c}{b}\)
\(\Leftrightarrow b^2+c^2-a^2=2c^2\)
\(\Leftrightarrow a^2+c^2=b^2\)
Tam giác vuông tại B
H
28 tháng 9 2023
Theo đl sin có:
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\Rightarrow b=a\dfrac{sinB}{sinA};c=\dfrac{sinC}{sinA}.a\)
Mà `b+c=2a`
\(\Rightarrow a\dfrac{sinB}{sinA}+a\dfrac{sinC}{sinA}=2a\\ \Rightarrow\dfrac{sinB}{sinA}+\dfrac{sinC}{sinA}=2\\ \Leftrightarrow sinB+sinC=2sinA\)
Chọn B
N
2
Lời giải:
\(\frac{1+\cos B}{\sin B}=\frac{2a+c}{\sqrt{(2a-c)(2a+c)}}\)
\(\Rightarrow \frac{(1+\cos B)^2}{\sin ^2B}=\frac{2a+c}{2a-c}\) (bình phương 2 vế)
\(\Leftrightarrow \frac{1+\cos ^2B+2\cos B}{\sin ^2B}=\frac{2a-c+2c}{2a-c}\)
\(\Leftrightarrow \frac{\sin ^2B+2\cos ^2B+2\cos B}{\sin ^2B}=1+\frac{2c}{2a-c}\)
\(\Leftrightarrow \frac{\cos ^2B+\cos B}{\sin ^2B}=\frac{c}{2a-c}\)
\(\Rightarrow (2a-c)(\cos ^2B+\cos B)=c\sin ^2B\)
\(\Leftrightarrow 2a\cos ^2B+(2a-c)\cos B=c\sin ^2B+c\cos ^2B=c(\sin ^2B+\cos ^2B)=c\)
\(\Leftrightarrow 2a(\cos ^2B+\cos B)=c(\cos B+1)\)
\(\Leftrightarrow (\cos B+1)(2a\cos B-c)=0\)
Với mọi \(\widehat{B}< 180^0\Rightarrow \cos B+1\neq 0\). Suy ra \(2a\cos B-c=0\Rightarrow \cos B=\frac{c}{2a}\)
Kẻ đường cao $CH$ xuống $AB$
\(\cos B=\frac{BH}{BC}=\frac{BH}{a}=\frac{c}{2a}\)
\(\Rightarrow BH=\frac{c}{2}\) hay $H$ là trung điểm của $AB$. Vậy $CH$ đồng thời là đường cao và đường trung tuyến, suy ra tam giác $ABC$ cân tại $C$