Nhân các phân thức sau:

a) 4...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

a, ĐKXĐ : \(x-1\ne0\)

=> \(x\ne1\)

TH1 : \(x-2\ge0\left(x\ge2\right)\)

=> \(\left|x-2\right|=x-2=1\)

=> \(x=3\left(TM\right)\)

- Thay x = 3 vào biểu thức P ta được :

\(P=\frac{3+2}{3-1}=\frac{5}{2}\)

TH2 : \(x-2< 0\left(x< 2\right)\)

=> \(\left|x-2\right|=2-x=1\)

=> \(x=1\left(KTM\right)\)

Vậy giá trị của P là \(\frac{5}{2}\) .

24 tháng 2 2020

a) \(P=\frac{x+2}{x-1}\) \(\left(ĐKXĐ:x\ne1\right)\)

Ta có: \(\left|x-2\right|=1\text{⇔}\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) (loại x = 1 vì x ≠ 1)

Thay \(x=3\) vào P, ta có:

\(P=\frac{3+2}{3-2}=\frac{5}{1}=5\)

Vậy P = 5 tại x = 3.

b) \(Q=\frac{x-1}{x}+\frac{2x+1}{x^2+x}=\frac{x-1}{x}+\frac{2x+1}{x\left(x+1\right)}=\frac{x^2-1}{x\left(x+1\right)}+\frac{2x+1}{x\left(x+1\right)}\) (ĐKXĐ: x ≠ 0, x ≠ -1)

\(=\frac{x^2+2x}{x\left(x+1\right)}=\frac{x\left(x+2\right)}{x\left(x+1\right)}=\frac{x+2}{x+1}\)

Câu 1: Số dư khi chia \(43^2+43.17\) cho 60 là: Câu 2: Số thực x để biểu thức \(A=(5x-3)^2-\dfrac{3}{4}\) đạt giá trị nhỏ nhất là (Nhập kết quả dưới dạng số thập phân gọn nhất) Câu 3: Một hình chữ nhật có chiều dài gấp hai lần chiều rộng. Biết diện tích hình chữ nhật là 8cm2 thì chiều rộng hình chữ nhật là: Câu 4: Hai tam giác ABC và A’B’C’ là hai tam giác đồng dạng với tỉ...
Đọc tiếp

Câu 1: Số dư khi chia \(43^2+43.17\) cho 60 là:

Câu 2: Số thực x để biểu thức \(A=(5x-3)^2-\dfrac{3}{4}\) đạt giá trị nhỏ nhất là

(Nhập kết quả dưới dạng số thập phân gọn nhất)

Câu 3: Một hình chữ nhật có chiều dài gấp hai lần chiều rộng. Biết diện tích hình chữ nhật là 8cm2 thì chiều rộng hình chữ nhật là:

Câu 4: Hai tam giác ABC và A’B’C’ là hai tam giác đồng dạng với tỉ số đồng dạng là \(k=\dfrac{2}{5}\).Nếu chu vi của tam giác A’B’C’ là 40cm thì chu vi của tam giác ABC là:

Câu 5: Cho một hình vuông có diện tích bằng diện tích của hình chữ nhật có chu vi là 104cm và chiều dài bằng 2,25 lần chiều rộng. Độ dài cạnh hình vuông đó là:

Câu 6: Tổng tất cả các số nguyên dương n khác 2 sao cho n-2 là ước của n2+1 là

Câu 7: Biểu thức \(P=\dfrac{1}{x^2+x+1}\)​ đạt giá trị lớn nhất khi x=

(Nhập kết quả dưới dạng số thập phân gọn nhất)

Câu 8: Cho tam giác ABC cân tại A có chu vi là 80cm. Gọi I là giao điểm của các đường phân giác trong của tam giác, AI cắt BC tại D. Biết \(AI=\dfrac{3}{4}AD\). Độ dài cạnh BC là:

Câu 9: Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0; (x,y,z\neq 0)\). Giá trị của biểu thức \(\dfrac{yz}{x^2} +\dfrac{xz}{y^2} +\dfrac{xy}{z^2}\)​ là:

Câu 10: Cho \(x^2+y^2=\dfrac{50}{7}xy\) với y>x>0. Giá trị của biểu thức \(P=\dfrac{x-y}{x+y}\) là:

(Nhập kết quả dưới dạng số thập phân gọn nhất)

1
4 tháng 6 2018

Ai giúp mk với mk đang cần gấp

Mk làm được hết

mà vẫn cứ sai hoài à

tìm mãi ko thấy lỗi sai

10 tháng 4 2018

1/

A= \(\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\) = 0 ;(ĐKXĐ : x ≠ -3; x ≠ 2)

⇔ A = \(\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\) = 0

⇔ A = \(\dfrac{2}{x-2}\) = 0

⇒ x = 2 (loại) ⇒ pt vô nghiệm

11 tháng 4 2018

về phân thức bạn .

30 tháng 10 2017

bài 1: phân tích đa thức thành nhân tử:

a) \(\dfrac{1}{4}x^2-5xy+25y^2\)

\(=\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.5y+\left(5y\right)^2\)

\(=\left(\dfrac{1}{2}x-5y\right)^2\)

b) \(49\left(y-4\right)^2-9\left(y+2\right)^2\)

\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)

\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)

\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)

\(=\left(4y-34\right)\left(10y-22\right)\)

c) \(125-x^6\)

\(=5^3-\left(x^2\right)^3\)

\(=\left(5-x^2\right)\left[5^2+5x^2+\left(x^2\right)^2\right]\)

\(=\left(5-x^2\right)\left(25+5x^2+x^4\right)\)

31 tháng 10 2017

Bài 3 .

a) A =x2 + y2 - 4x + 2y + 5

A =( x2 + 2y + 1 ) + ( y2 - 2.2x + 22)

A = ( x + 1)2 +( y - 2)2

Do : ( x + 1)2 lớn hơn hoặc bằng 0 với mọi x

Suy ra : ( y - 2)2

Vậy , Amin = 0 khi và chỉ khi : x + 1 = 0 -> x = -1

y - 2 =0 -> y = 2

b)B = -4x2 - 9y2 - 4x + 6y + 3

B = - [ (2x)2 + 2.2x + 1] - [ ( 3y)2 - 2.3y + 1] + 5

B = -( 2x + 1)2 - ( 3y - 1)2 + 5

Do : -( 2x + 1)2 nhỏ hơn hoặc bằng 0 với mọi x

Suy ra : -( 2x + 1)2 + 5 nhỏ hơn hoặc bằng 5 với mọi x

-( 3y - 1)2 nhỏ hơn hoặc bằng 0 với mọi x

Suy ra : - ( 3y - 1)2 + 5 nhỏ hơn hoặc bằng 5 với mọi x

Vậy , Bmax = 5 khi và chỉ khi 2x + 1 =0 -> x = \(-\dfrac{1}{2}\)

3y - 1 = 0 -> y = \(\dfrac{1}{3}\)

19 tháng 3 2019

ban nao biet lam , lam minh coi voi

Bài 1: Cho phân thức A = \(\frac{x^2+6x+9}{x^2-9}\) a) Với giá trị nào của x thì giá trị của phân thức A xác định ? b) Rút gọn phân thức A c) Tính giá trị của biểu thức A tại x=9 Bài 7 : Tìm x a) \(x^2-6x+5=0\) c)\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\) b) \(x\left(x+3\right)=\left(2x-1\right)\left(x+3\right)\) d)...
Đọc tiếp

Bài 1: Cho phân thức A = \(\frac{x^2+6x+9}{x^2-9}\)

a) Với giá trị nào của x thì giá trị của phân thức A xác định ?

b) Rút gọn phân thức A

c) Tính giá trị của biểu thức A tại x=9

Bài 7 : Tìm x

a) \(x^2-6x+5=0\) c)\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

b) \(x\left(x+3\right)=\left(2x-1\right)\left(x+3\right)\) d) \(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3=0\)

e)\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\) f) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)

g) \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\) h) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)

Bài 3 : Tìm điều kiện của m để phương trình sau là phương trình bậc nhất một ẩn

(2m - 1 )x + 3 - m =0

Bài 4 :Tìm giá trị của k sao cho:

a/ Phương trình: 2x + k = x – 1 có nghiệm x = – 2.

b) Phương trình: (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2

c/Phương trình: 2(2x + 1) + 18 = 3(x + 2)(2x + k) có nghiệm x = 1

d/ Phương trình: 5(m + 3x)(x + 1) – 4(1 + 2x) = 80 có nghiệm x = 2

Bài 10 :Tìm các giá trị của m, a để các cặp phương trình sau đây tương đương:

a) \(mx^2-\left(m+1\right)x+1=0\)\(x-1=0\)

b) \(\left(x-3\right)\left(ax+2\right)=0\) và x +1 =0

2
25 tháng 2 2020

bố mẹ thằng nào biết mới lạ

25 tháng 2 2020

c) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\\ \Leftrightarrow\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\\ \Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\\ \Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\\ \Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\\ \Leftrightarrow\left(x+2005\right)=0\Leftrightarrow x=-2005\)

câu egf làm tương tự

13 tháng 10 2019

2)

\(y+y^2-y^3-y^4=0\)

\(\Leftrightarrow y\left(y+1\right)-y^3\left(y+1\right)=0\)

\(\Leftrightarrow\left(y-y^3\right)\left(y+1\right)=0\)

\(\Leftrightarrow y\left(1-y^2\right)\left(y+1\right)=0\)

\(\Leftrightarrow y\left(1-y\right)\left(y+1\right)^2=0\)

\(\Leftrightarrow y\in\left\{0;-1;1\right\}\)

3)

\(A=n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n^2-1\right)\left(n+3\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên \(\hept{\begin{cases}n-1\\n+1\\n+3\end{cases}}\)chẵn

\(\Rightarrow\left(n-1\right)\left(n+1\right)\left(n+3\right)⋮2^3=8\left(đpcm\right)\)

13 tháng 10 2019

b) \(a^2+2ab+2cd+b^2-c^2-d^2\)

\(=\left(a^2+2ab+b^2\right)-\left(c^2-2cd+d^2\right)\)

\(=\left(a+b\right)^2-\left(c-d\right)^2\)

\(=\left(a+b+c-d\right)\left(a+b-c+d\right)\)

7 tháng 10 2020

\(M=4x^2+9y^2-12xy\)

\(M=\left(4x^2+12xy+9y^2\right)-24xy\)

\(M=\left(2x+3y\right)^2-24xy\)

\(M=2^2-288=-284\)

7 tháng 10 2020

Ta có: \(x-y=7\Rightarrow x=y+7\)

Thay vào: \(y\left(y+7\right)=60\)

\(\Leftrightarrow y^2+7y-60=0\)

\(\Leftrightarrow\left(y-5\right)\left(y+12\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=5\\y=-12\left(ktm\right)\end{cases}}\Rightarrow y=5\Rightarrow x=12\)

Từ đó:

\(N=5^4+12^4=625+20736=21361\)

1. Thực hiện phép tính: ( 27x3 - 8 ) : (6x + 9x2 +4) 2. C/m biểu thức sau không phụ thuộc vào biến x,y a) A= (3x - 5)(2x +11) - (2x +3)(3x+7) b) B = (2x + 3)(4x2 - 6x +9) - 2(4x3 - 1) 3. Phân tích đa thức thành nhân tử: a) 81x4 + 4 b) x2 + 8x + 15 c) x2 - x - 12 4. Tìm x biết: a) 2x (x-5) - x(3+2x) = 26 b) 5x (x-1) = x -1 c) 2(x+5) - x2 - 5x = 0 d) (2x-3)2 - (x+5)2 = 0 e) 3x3 - 48x = 0 f) x3 + x2 -4x = 4 g) (2x + 5)2 + (4x + 10)(3-x) + x2 - 6x...
Đọc tiếp

1. Thực hiện phép tính: ( 27x3 - 8 ) : (6x + 9x2 +4)

2. C/m biểu thức sau không phụ thuộc vào biến x,y

a) A= (3x - 5)(2x +11) - (2x +3)(3x+7)

b) B = (2x + 3)(4x2 - 6x +9) - 2(4x3 - 1)

3. Phân tích đa thức thành nhân tử:

a) 81x4 + 4

b) x2 + 8x + 15

c) x2 - x - 12

4. Tìm x biết:

a) 2x (x-5) - x(3+2x) = 26

b) 5x (x-1) = x -1

c) 2(x+5) - x2 - 5x = 0

d) (2x-3)2 - (x+5)2 = 0

e) 3x3 - 48x = 0

f) x3 + x2 -4x = 4

g) (2x + 5)2 + (4x + 10)(3-x) + x2 - 6x +9=0

5. C/m rằng biểu thức

A = -x(x-6) - 10 luôn luôn âm với mọi x

B = 12x - 4x2 - 14 luôn luôn âm với mọi x

C = 9x2 -12x + 11 luôn luôn dương với mọi x

D = x2 - 2x + 9y2 -6y + 3 luôn luôn dương với mọi x, y.

6. Cho các phân thức sau

\(A=\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\)

\(B=\dfrac{x^2-9}{x^2-6x+9}\)

\(C=\dfrac{9x^2-16}{3x^2-4x}\)

\(D=\dfrac{x^2+4x+4}{2x+4}\)

\(E=\dfrac{2x-x^2}{x^2-4}\)

\(F=\dfrac{3x^2+6x+12}{x^3-8}\)

a) Với điều kiện nào của x thì giá trị của các phân thức trên xác định

b) Tìm x để giá trị của các phân thức trên bằng 0

c) Rút gọn các phân thức trên.

7. Thực hiện các phép tính sau:

a) \(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x^2+3x}\)

b) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

c) \(\dfrac{3}{x+y}-\dfrac{3x-3y}{2x-3y}.\left(\dfrac{2x-3y}{x^2-y^2}-2x+3y\right)\)

d) \(\dfrac{5}{2x-4}+\dfrac{7}{x+2}-\dfrac{10}{x^2-4}\)

e) \([\dfrac{2x-3}{x\left(x+1\right)^2}+\dfrac{4-x}{x\left(x+1\right)^2}]:\dfrac{4}{3x^2+3x}\)

g) \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}.\left(\dfrac{1}{x^2-2x+1}+\dfrac{1}{1-x^2}\right)\)

8. Cho biểu thức \(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\) ( với x \(\ne\pm2\) )

a) Rút gọn biểu thức A

b) Chứng tỏ rằng với mọi x thỏa mãn -2 < x <2, x \(\ne\) -1 phân thức luôn có giá trị âm.

4
23 tháng 12 2017

Vì dài quá nên mình chỉ có thể trả lời được mấy câu thôi

Bài 1:

27x3 - 8 : (6x + 9x2 +4)

= (3x - 2) (9x2 + 6x + 4) : (9x2 + 6x + 4)

= 3x - 2

Bài 3:

a, 81x4 + 4 = (9x2)2 + 36x2 + 4 - 36x2

= (9x2 + 2)2 - (6x)2

= (9x2 + 6x + 2)(9x2 - 6x + 2)

b, x2 + 8x + 15 = x2 + 3x + 5x + 15

= x(x + 3) + 5(x + 3)

= (x + 3)(x + 5)

c, x2 - x - 12 = x2 + 3x - 4x - 12

= x(x + 3) - 4(x + 3)

= (x + 3) (x - 4)

23 tháng 12 2017

Câu 1:

(27x3 - 8) : (6x + 9x2 + 4)

= (3x - 2)(9x2 + 6x + 4) : (6x + 9x2 + 4)

= 3x - 2

Câu 2:

a) (3x - 5)(2x+ 11) - (2x + 3)(3x + 7)

= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21

= -76

⇒ đccm

b) (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)

= 8x3 + 27 - 8x3 + 2

= 29

⇒ đccm

Câu 3:

a) 81x4 + 4

= (9x2)2 + 22

= (9x2 + 2)2 - (6x)2

= (9x2 - 6x + 2)(9x2 + 6x + 2)

b) x2 + 8x + 15

= x2 + 3x + 5x + 15

= x(x + 3) + 5(x + 3)

= (x + 3)(x + 5)

c) x2 - x - 12

= x2 - 4x + 3x - 12

= x(x - 4) + 3(x - 4)

= (x - 4)(x + 3)

\(\left(m-n\right)^6-6\left(m-n\right)^4+12\left(m-n\right)^2-8=\left[\left(m-n\right)^2-2\right]^3\)

\(\dfrac{8}{27}a^3-\dfrac{8}{3}a^2b+8b^2a-8b^3=\left(\dfrac{2}{3}a-2b\right)^3\)

Chúc bạn học tốt !!