K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

a) Định nghĩa: Góc giữa đường thẳng và mặt phẳng.

Cho đường thẳng d cắt mặt phẳng (α) tại điểm O và d không vuông góc với (α). Góc giữa đường thẳng d và mặt phẳng (α) là góc tạo bởi đường thẳng d và hình chiếu vuông góc góc d' của d trên mặt phẳng (α), kí hiệu góc (d,α).

- Nếu d vuông góc góc với (α) ta qui ước góc (d,α) = 90o.

- Nếu d // (α) hay d nằm trong (α) ta quy ước góc (d,α) = 90o.

b) Định nghĩa: Góc giữa hai mặt phẳng

Giả sử hai mặt phẳng (α) và (β) cắt nhau theo giao tuyến c. Từ điểm I bất kì trên c ta dựng trong (α) đường thẳng a vuông góc với c và dựng trong (β) đường thẳng b vuông góc với c. Ta gọi góc giữa hai đường a và b là góc giữa hai mặt phẳng (α) và (β). Như vậy góc giữa hai mặt phẳng (α) và (β) luôn có số đo bé hơn hoặc bằng 90o.

*Nếu hai mặt phẳng song song hoặc trùng với nhau thì ta nói rằng góc giữa hai mặt phẳng đó bằng 0o. Góc giữa hai mặt phẳng (α) và (β) được kí hiệu là (α, β), ta có 0o ≤ (α, β) ≤ 90o.

31 tháng 3 2017

a) Góc giữa đường thẳng và mặt phẳng.

Định nghĩa

Cho đường thẳng d cắt mặt phẳng (α) tại điểm O và d không vuông góc với (α). Góc giữa đường thẳng d và mặt phẳng (α) là góc tạo bởi đường thẳng d và hình chiếu vuông góc góc d' của d trên mặt phẳng (α), kí hiệu góc (d,α).

- Nếu d vuông góc góc với (α) ta qui ước góc (d,α) = 90o.

- Nếu d // (α) hay d nằm trong (α) ta quy ước góc (d,α) = 90o.

b) Góc giữa hai mặt phẳng

Định nghĩa : Giả sử hai mặt phẳng (α) và (β) cắt nhau theo giao tuyến c. Từ điểm I bất kì trên c ta dựng trong (α) đường thẳng a vuông góc với c và dựng trong (β) đường thẳng b vuông góc với c. Ta gọi góc giữa hai đường a và b là góc giữa hai mặt phẳng (α) và (β). Như vậy góc giữa hai mặt phẳng (α) và (β) luôn có số đo bé hơn hoặc bằng 90o.

*Nếu hai mặt phẳng song song hoặc trùng với nhau thì ta nói rằng góc giữa hai mặt phẳng đó bằng 0o. Góc giữa hai mặt phẳng (α) và (β) được kí hiệu là (α, β), ta có 0o ≤ (α, β) ≤ 90o.

19 tháng 1 2019

Đáp án B

Chỉ có khẳng định (I) đúng

QT
Quoc Tran Anh Le
Giáo viên
24 tháng 8 2023

Để đo góc giữa đường thẳng chứa tia sáng mặt trời và mặt phẳng nằm ngang tại một vị trí và một thời điểm cụ thể, ta cần sử dụng một thiết bị đo góc, thường được gọi là gnomon.

Cách thực hiện đo góc Mặt Trời như sau:

- Chọn một vị trí cố định trên mặt đất và đặt gnomon vào vị trí đó sao cho nó đứng thẳng đứng và vuông góc với mặt đất.

- Đợi cho đến khi đến thời điểm giữa trưa, khi tia sáng Mặt Trời đứng thẳng trên vị trí của bạn. Bạn có thể biết được thời điểm này thông qua các trang web hoặc ứng dụng dựa trên vị trí của bạn.

- Xác định bóng của gnomon trên mặt phẳng ngang và vẽ một đường thẳng từ đỉnh của gnomon đến đỉnh của bóng.

- Sử dụng thiết bị đo góc để đo góc giữa đường thẳng này và mặt phẳng ngang. Đó chính là góc Mặt Trời tại vị trí và thời điểm đó.

a: (SB;(ABCD))=(BS;BA)=góc SBA

b: (SO;(ABCD))=(OS;OA)=góc SOA

c: (SC;(SAD))=(SC;SD)

 

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a)     Nếu a và b cắt nhau tại O thì: \(0^\circ  \le \left( {a,b} \right) \le 90^\circ \)

b)    Nếu a // b thì không có góc tạo bởi a và b

c)     Nếu a và b trùng nhau thì góc giữa a và b bằng \(0^\circ \)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) \(\left. \begin{array}{l}a \bot \left( P \right)\\b \subset \left( P \right)\end{array} \right\} \Rightarrow a \bot b \Rightarrow \left( {a,b} \right) = {90^0}\)

b) Gọi \(\left( P \right) \cap \left( Q \right) = \Delta \)

\(\begin{array}{l}a \bot \Delta \left( {a \bot \left( P \right)} \right)\\b \bot \Delta \left( {b \bot \left( Q \right)} \right)\\ \Rightarrow \left( {\left( P \right),\left( Q \right)} \right) = \left( {a,b} \right) = {90^0}\end{array}\)

20 tháng 11 2018

16 tháng 3 2017

  Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Hình chiếu vuông góc của SI trên mặt phẳng (ABC) là AI nên góc giữa SI và mặt phẳng (ABC) là:

(vì tam giác SIA vuông tại A nên góc SIA nhọn) ⇒ Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Xét tam giác SIA vuông tại A, Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) nên:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Dựng hình bình hành ACBD, tam giác ABC đều nên tam giác ABD đều.

+) Ta có:

   AC // BD; BD ⊂ (SBD) nên AC // (SBD).

   mà SB ⊂ (SBD) nên d(AC, SB) = d(A, (SBD)).

- Gọi K là trung điểm đoạn BD, tam giác ABD đều suy ra AK ⊥ BD và Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) mà BD ⊥ SA nên BD ⊥ (SAK).

- Dựng AH ⊥ SK; H ∈ SK.

- Lại có AH ⊥ BD suy ra AH ⊥ (SBD).

- Vậy d(A, (SBD)) = AH.

- Xét tam giác SAK vuông tại vuông tại A, đường cao AH ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Vậy d(AC, SB) = d(A, (SBD)) 

Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)