Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án : C
Chu kỳ 2 => e cuối điền vào lớp 2
Nhóm VA => tổng e lớp ngoài cùng là 5
=> 2s22p3
Cấu hình e đầy đủ : 1s22s22p3
=> Tổng hạt mang điện = p + e = 14
Ta có:
Hàm \(\Psi\)được gọi là hàm chuẩn hóa nếu: \(\int\Psi.\Psi^{\circledast}d\tau=1hay\int\Psi^2d\tau=1\)
Hàm \(\Psi\)chưa chuẩn hóa là: \(\int\left|\Psi\right|^2d\tau=N\left(N\ne1\right)\)
Để có hàm chuẩn hóa, chia cả 2 vế cho N,ta có:
\(\frac{1}{N}.\int\left|\Psi\right|^2d\tau=1\Rightarrow\frac{1}{N}.\int\Psi.\Psi^{\circledast}d\tau=1\)
Trong đó: \(\Psi=\frac{1}{\sqrt{N}}.\Psi\)là hàm chuẩn hóa; \(\frac{1}{\sqrt{N}}\)là thừa số chuẩn hóa
Ta có:
\(\frac{1}{N}.\int\Psi.\Psi^{\circledast}d\tau=\frac{1}{N}.\int\left|\Psi\right|^2d\tau=1\Leftrightarrow\frac{1}{N}.\iiint\left|\Psi\right|^2dxdydz=1\)
Chuyển sang tọa độ cầu, ta có: \(\begin{cases}x=r.\cos\varphi.sin\theta\\y=r.sin\varphi.sin\theta\\z=r.\cos\theta\end{cases}\)với \(\begin{cases}0\le r\le\infty\\0\le\varphi\le2\pi\\0\le\theta\le\pi\end{cases}\)
\(\Rightarrow\frac{1}{N}.\iiint\left(r.\cos\varphi.sin\theta\right)^2.e^{-\frac{r}{a_o}}.r^2.sin\theta drd\varphi d\theta=1\)
\(\Leftrightarrow\frac{1}{N}.\int\limits^{\infty}_0r^4.e^{-\frac{r}{a_o}}dr.\int\limits^{2\pi}_0\cos^2\varphi d\varphi.\int\limits^{\pi}_0sin^3\theta d\theta=1\)
\(\Leftrightarrow\frac{1}{N}.\frac{4!}{\left(\frac{1}{a_o}\right)^5}.\int\limits^{2\pi}_0\frac{\cos\left(2\varphi\right)+1}{2}d\varphi\int\limits^{\pi}_0\frac{3.sin\theta-sin3\theta}{4}d\theta=1\)(do \(\int\limits^{\infty}_0x^n.e^{-a.x}dx=\frac{n!}{a^{n+1}}\))
\(\Leftrightarrow\frac{1}{N}.24.a^5_o.\frac{4}{3}.\pi=1\)
\(\Leftrightarrow\frac{1}{N}=\frac{1}{32.a^5_o.\pi}\)
\(\Rightarrow\)Thừa số chuẩn hóa là: \(\frac{1}{\sqrt{N}}=\sqrt{\frac{1}{32.a^5_o.\pi}}\); Hàm chuẩn hóa: \(\Psi=\frac{1}{\sqrt{N}}.\Psi=\sqrt{\frac{1}{32.a^5_o.\pi}}.x.e^{-\frac{r}{2a_o}}\)
áp dụng dk chuẩn hóa hàm sóng. \(\int\psi\psi^{\cdot}d\tau=1.\)
ta có: \(\int N.x.e^{-\frac{r}{2a_0}}.N.x.e^{-\frac{r}{2a_0}}.d\tau=1=N^2.\int_0^{\infty}r^4e^{-\frac{r}{a_0}}dr.\int_0^{\pi}\sin^3\theta d\tau.\int^{2\pi}_0\cos^2\varphi d\varphi=N^2.I_1.I_2.I_3\)
Thấy tích phân I1 có dạng tích phân hàm gamma. \(\int^{+\infty}_0x^ne^{-ax}dx=\int^{+\infty}_0\frac{\left(\left(ax\right)^{n+1-1}e^{-ax}\right)d\left(ax\right)}{a^{n+1}}=\frac{\Gamma\left(n+1\right)!}{a^{n+1}}=\frac{n!}{a^{n+1}}.\)
.áp dụng cho I1 ta được I\(I1=4!.a_0^5=24a^5_0\). tính \(I2=\int_0^{\pi}\sin^3\theta d\theta=\int_0^{\pi}\left(\cos^2-1\right)d\left(\cos\theta\right)=\frac{4}{3}\). tính tp \(I3=\int_0^{2\pi}\cos^2\varphi d\varphi=\int_0^{2\pi}\frac{\left(1-\cos\left(2\varphi\right)\right)}{2}d\varphi=\pi\)
suy ra \(\frac{N^2.24a_0^5.\pi.4}{3}=1\). vậy N=\(N=\frac{1}{\sqrt{32\pi a_0^5}}\). hàm \(\psi\) sau khi chiuẩn hóa có dạng \(\psi=\frac{1}{\sqrt{\pi32.a_0^5}}x.e^{-\frac{r}{2a_0}}\)
Các bạn chú ý, khi tính ra E(\(\pi\)) = 1,7085.10-18 thì đơn vị là J2s2/kg.m2 chứ không phải là đơn vị (J), sau đó nhân với NA và nhân với 10-3 thì mới ra được kết quả là 1,06.103 kJ/mol.
bạn có ghi bài trên lớp phần cấu tạo chất đủ không. co mình mượn chép lại mấy bài phần đó với
Ta có: cos 450 = \(\frac{\text{ λ}}{\text{ λ}'}=\frac{\text{ λ}}{0,22}\)
=> λ = cos450.0,22 = 0.156Ǻ
Thưa thầy, thầy chữa bài này được không ạ. Thầy ra lâu rồi nhưng chưa có đáp án đúng
Câu trả lời của bạn Vũ Thị Ngọc Chinh câu a và câu b tớ thấy đúng rồi, ccâu c ý tính năng lượng của photon ứng với vạch giới hạn của dãy paschen tớ tính thế này:
Khi chuyển từ mức năng lượng cao \(E_{n'}\)về mức năng lượng thấp hơn \(E_n\)năng lượng của e giảm đi một lượng đứng bằng năng lượng cảu một photon nên trong trương hợp này đối vs nguyên tử H thì nang lượng photon ứng với vạch giới hạn của dãy paschen là:
\(\Delta E=E_{n'}-E_n=\left(0-\left(-13,6.\frac{1}{n^2}\right)\right)=13,6.\frac{1}{3^2}=1.51\left(eV\right)\)
Không biết đúng không có gì sai góp ý nhé!!
a. pt S ở trạng thái dừng:
\(\bigtriangledown\)2\(\Psi\)+\(\frac{8m\pi^2}{h^2}\)(E-U)\(\Psi\)=0
đối với Hidro và các ion giống nó, thế năng tương tác hút giữa e và hạt nhân:
U=-\(\frac{Z^2_e}{r}\)
\(\rightarrow\)pt Schrodinger của nguyên tử Hidro và các ion giống nó:
\(\bigtriangledown\)2\(\Psi\)+\(\frac{8m\pi^2}{h^2}\)(E+\(\frac{Z^2_e}{r}\))=0
b.Số sóng : \(\widetilde{\nu}\)=\(\frac{1}{\lambda}\)=\(\frac{1}{4861,3.10^{-10}}\)
ta có : \(\widetilde{\nu}\)=Rh.(\(\frac{1}{n^2}\)-\(\frac{1}{n'^2}\)
\(\rightarrow\)Hằng số Rydberg:
Rh=\(\frac{\widetilde{v}}{\frac{1}{n^2}-\frac{1}{n'^2}}\)=\(\frac{1}{\lambda.\left(\frac{1}{n^2}-\frac{1}{n'^2}\right)}\)
vạch màu lam:n=3 ; n'=4
Rh=\(\frac{1}{4861,3.10^{-10}.\left(\frac{1}{2^2}-\frac{1}{4^2}\right)}\)=10971.103 m-1=109710 cm-1.
c.Dãy Paschen :vạch phổ đầu tiên n=3 ; vạch phổ giới hạn n'=\(\infty\)
Số sóng : \(\widetilde{\nu}\)= Rh.(\(\frac{1}{n^2}\)-\(\frac{1}{n'^2}\))
=109710.(\(\frac{1}{3^2}\)-\(\frac{1}{\infty^2}\))=12190 cm-1.
Năng lượng của photon ứng với vạch giới hạn của dãy Paschen:
En=-13,6.\(\frac{1}{n^2}\)=-13,6.\(\frac{1}{\infty}\)=0.
Theo đề bài ta có: me= 9,10-31 (kg); h= 6,625.10-34; \(\pi=3,14\) ;sai số tọa độ theo phương x là : \(\Delta x=\text{1Ǻ}=10^{-10}\left(m\right)\)
Hệ thức bất định Heisenberg ta có: \(\Delta x.\Delta p_x\ge\frac{h}{2.\pi}\)
Vậy thay số ta có độ bất định về động lượng của electron theo phương x xác định là : \(\Delta p_x=\frac{h}{2.\pi.\Delta x}=\frac{6,6.25.10^{-34}}{2.3,14.10^{-10}}=1,055.10^{-24}\left(kg.m.s^{-1}\right)\)
Mặt khác ta có: \(\Delta p_x=\Delta v_x.m=\Delta v_x.m_e\)
Suy ra ta có độ bất định về tốc độ của electron theo phương x là: \(\Delta v_x=\frac{\Delta p_x}{m_e}=\frac{1,055.10^{-24}}{9,1.10^{-31}}=1159270\left(m.s^{-1}\right)\approx1,16.10^6\left(m.s^{-1}\right)\)
theo bài ta có: \(\Delta x=1\text{Ǻ}=10^{-10}\left(m\right)\)
áp dụng hệ thức Heisenberg ta có: \(\Delta x.\Delta Px\ge\frac{h}{2\pi}\)
với \(\frac{h}{2\pi}=1,054.10^{-34}\)
\(\Rightarrow\Delta Px\ge\frac{h}{2\pi.\Delta x}=\frac{1,054.10^{-34}}{10^{-10}}=1,054.10^{-24}\left(kg.m.s^{-1}\right)\)
mặt khác ta lại có: \(\Delta Px=m.\Delta vx\Rightarrow\Delta vx=\frac{\Delta Px}{m}=\frac{1,054.10^{-24}}{9,1.10^{-31}}=1,16.10^6\left(\frac{m}{s}\right)\)
Ta có hệ thức De_Broglie: λ= h/m.chmc
Đối với vật thể có khối lượng m và vận tốc v ta có: λ= h/m.vhmv
a) Ta có m=1g=10-3kg và v=1,0 cm/s=10-2m/s
→ λ= 6,625.10−3410−3.10−2=6,625.10-29 (m)
b) Ta có m=1g=10-3kg và v =100 km/s=105 m
→ λ= 6,625.10−3410−3.105= 6,625.10-36 (m)
c) Ta có mHe=4,003 = 4,003. 1,66.10-24. 10-3=6,645.10-27 kg và v= 1000m/s
→ λ= 6,625.10−344,03.1000=9.97.10-11 (m)
a) áp dụng công thức
\(\lambda=\frac{h}{mv}=\frac{6,625.10^{-34}}{10^{-3}.10^{-2}}=6,625.10^{-29}\left(m\right)\)
b)
\(\lambda=\frac{6,625.10^{-34}}{10^{-3}.100.10^3}=6,625.10^{-36}\left(m\right)\)
c)
\(\lambda=\frac{6,625.10^{-34}}{4,003.1000}=1,65.10^{-37}\left(m\right)\)
Công thức tổng quatscuar số hạng nguyên tử là:\(^{^{2s+1}}X_j\)
+ với Cu ta có cấu hình e:\(^{1s^22s^22p^63s^23p^64s^13d^{10}}\) số e độc thân N=1 =>s=\(\frac{N}{2}=0.5\)
\(L=\Sigma ml=0\) =>X là S , mặt khác số e phân lớp ngoài cùng điền vào các ô lượng tử bằng 1 nửa trạng thái bão hòa =>j=|L-s|=0.5
Số hạng nguyên tử của Cu là \(^2S_{0.5}\)
+ với Cr ta có cấu hình e :\(^{1s^22s^22p^63s^23p^64s^13d^5}\) số e độc thân N=6 => s=N/2=3
\(L=\Sigma ml=0\) suy ra X là S
Mặt khác ta có số e điền ở phân lớp ngoài cùng băng 1 nửa trạng thái bão hòa =>j=|L-s|=3
số hạng nguyên tử của Cr là \(^7S_3\)
+ với Ag ta có cấu hình e :\(1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^14d^{10}\) số e độc thân N=1 =>s=N/2=0.5
\(L=\Sigma ml=0\) suy ra X là S
Số e điền ở phân lớp ngoài cùng bằng 1 nửa trạng thái bão hòa => j=|L-s|=0.5
Suy ra số hạng nguyên tử của Ag là :\(^2S_{0.5}\)
+ với Au ta có cấu hình e:\(1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^14f^{14}5d^{10}\) số e độc thân là N=1 => s=N/2=0.5
\(L=\Sigma ml=0\) suy ra X là S
Số e điền vào phân lớp ngoài cùng chỉ băng 1 nửa trạng thái bão hòa =>j=|L-s|=0.5
Suy ra số hạng nguyên tử của Au là :\(^2S_{0.5}\).
Ta có: Cu: 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^6\)4s\(^1\)3d\(^{10}\)
N=1, S=\(\frac{N}{2}\)=\(\frac{1}{2}\)=> 2s+1= 2; L=0; J= L+S=\(\frac{1}{2}\) => S\(^2_{\frac{1}{2}}\)
Cr: 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^6\)4s\(^1\)3d\(^5\)
N=6, S=\(\frac{N}{2}\)=3, => 2s+1= 7; L=0; J=|L-S|=|0-3|=3 => S\(^7_3\)
Au: 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^6\)4s\(^2\)3d\(^{10}\)4p\(^6\)5s\(^2\)4d\(^{10}\)5p\(^6\)6s\(^2\)4f\(^{14}\)5d\(^9\)
N=1, S=\(\frac{N}{2}\)=\(\frac{1}{2}\), => 2s+1= 2, L= 2, J=L+S= 2+ \(\frac{1}{2}\)=\(\frac{5}{2}\) => D\(^2_{\frac{5}{2}}\)
Ag: 1s\(^2\)2s\(^2\)2p\(^6\)3s\(^2\)3p\(^6\)4s\(^2\)3d\(^{10}\)4p\(^6\)5s\(^1\)4d\(^{10}\)
N=1, S=\(\frac{1}{2}\), 2s+1=2, L=0, J= \(\frac{1}{2}\) => S\(^2_{\frac{1}{2}}\)
Chọn C.