K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2016

Ta có \(\dfrac{i_1}{i_2}=\dfrac{4}{5}\)

Nên chọn \(\begin{cases}i_1=4i \\ i_2=5i \end{cases}\) \(\Rightarrow i_{\equiv }=20i\)

Tại vị trí \(x_1= 0,5i_1=2i; x_2=12,5i_1=50i\) 

Nên số vân trùng thỏa mãn: \(2i < k.20i < 50i\)

Có 2 giá trị k thỏa mãn là: k = 1 hoặc k = 2.

Vậy có 2 vân trùng,

Chọn đáp án B.

27 tháng 1 2016

Vị trí vân sáng bậc 4 của ánh sáng đỏ: \(x_s^4 = 4. \frac{\lambda_d D}{a}\)

Tại vị trí này có vân sáng bậc \(k\) của ánh sáng có bước sóng \(\lambda\) tức là

 \(x_s^4 = x_s^k<=> 4\frac{\lambda_d D}{a}= k\frac{\lambda D}{a} \)

                <=>  \(\lambda = \frac{4\lambda_d}{k}.\ \ (1)\)

Mà bước sóng \(\lambda\) này thỏa mãn \(0,38 \mu m \leq \lambda \leq 0,76 \mu m.\)

              Thay (1) vào ta được \(0,38 \leq \frac{4\lambda_d}{k} \leq 0,76\)

                                        <=>  \( \frac{4\lambda_d }{0,76} \leq k \leq \frac{4\lambda_d}{0,38}\) 

                                        <=> \(\frac{4.0,76}{0,76} \leq k \leq \frac{4.0,76}{0,38}\)

                                        <=> \(4 \leq k \leq 8.\)

=> \(k = 4,5,6,7,8.\)(trong đó k = 4 chính là vân sáng bậc 4 của ánh sáng đỏ)

Vậy ngoài vân sáng bậc 4 của ánh sáng đỏ ra thì còn 4 vân sáng của các ánh sáng khác tại vị trí đó.

21 tháng 6 2017

Đáp án D

30 tháng 4 2016

        \(\lambda_1\)(tím)\(=0,42\mu m\) , \(\lambda_2\) (lục) \(=0,56\mu m\) , \(\lambda_3\) (đỏ) \(=0,7\mu m\)

Vì giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 11 cực đại giao thoa của ánh sáng đỏ \(\Rightarrow k_{đỏ}=k_3=12\)

Từ BSCNN \(\Rightarrow k_1=k_{tím}=20\Rightarrow\) giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 19 vân màu tím

  \(\Rightarrow k_{lục}=k_2=15\Rightarrow\) giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 14 vân màu lục.

\(\rightarrow A\)

1 tháng 2 2016

Số vân sáng trong khoảng giữa hai vân sáng nằm ở hai đầu là 

\(N_s = 2[\frac{L}{2i}]+1=> \frac{L}{2i }= 10=> i = 2mm.\)

\(\lambda = \frac{ai}{D}= 0,6 \mu m.\)

4 tháng 2 2016

Giả sử ta dịch vân sáng trung tâm về M thì N là vị trí vân sáng thứ 10(có 10 vân tối)

\(\Rightarrow i_1=2mm\) , Khi thay \(\lambda_1\) bằng \(\lambda_2\) \(\Rightarrow\frac{i_1}{i_2}=\frac{\lambda_1}{\lambda_2}\Rightarrow i_2=\frac{i_1\lambda_2}{\lambda_1}=\frac{10}{3}mm\)

M là vị trí của 1 vân giao thoa,Ta có: 

 Vân trung tâm trên màn không đổi⇒ta tìm vị trí trùng nhau của 2 loai ánh sáng với 2 khoảng vân khác nhau hay tương ứng với khoảng cách từ vân trung tâm tới M.Ta chia 2 TH như sau:

TH1: M là vân tối

\(\frac{10}{3}.\left(n,5\right)=2k\) với  n,k  nguyên  thì phương trình vô nghiệm

TH2:M là vân sáng

\(\frac{10}{3}.x=2y\) 

ới  x,y  nguyên  thì phương trình có nghiệm (3;5) và (6;10)

cả 2 nghiệm này đều kết luận trên MN có 7 vân sáng 

 

----->chọn A

18 tháng 1 2016

Xây dựng từ phần lý thuyết, hiệu đường đi của ánh sáng từ hai khe đến vân tối thứ \(k+1\) là 

\(d_2-d_1 = (k+0,5)\lambda.\)

Áp dụng với \(k+1 = 3\) => \(d_2-d_1 = (2+0,5)\lambda = 2,5 \lambda.\)

 

26 tháng 1 2016

Theo đề bài: Với bức xạ λ1 thì 10i1 = MN = 20mm → i1 = 2mm.

\(\frac{\iota_1}{\iota_2}=\frac{\text{λ}_1}{\text{λ}_2}=\frac{3}{5}\)\(\rightarrow\iota_2=\frac{10}{3}mm\rightarrow N_2=2.\left[\frac{MN}{2\iota_2}\right]+1=7\)

 

3 tháng 5 2016

Khi các vân sáng trùng nhau:   \(k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)

                                                  k10,4 = k20,5 = k30,6 \(\Leftrightarrow\) 4k1 = 5k2 = 6k3 

BSCNN(4,5,6) = 60

\(\Rightarrow\) k1 = 15 ; k2 = 12 ; k3 = 10 Bậc 15 của \(\lambda_1\) trùng bậc 12 của \(\lambda_2\) trùng với bậc 10 của \(\lambda_3\)

Trong khoảng giữa phải có:  Tổng số VS tính toán = 14 + 11 + 9 = 34

Ta xẽ lập tỉ số cho tới khi   k1 = 15 ; k2 = 12 ; k3 = 10

  - Với cặp \(\lambda_1;\lambda_2:\) \(\frac{k_1}{k_2}=\frac{\lambda_1}{\lambda_2}=\frac{5}{4}=\frac{10}{8}=\frac{15}{12}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k2 = 12  thì có tất cả 4 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k1 = 5 ; k2 = 4

Vị trí 3:  k1 = 10 ; k2 = 8                    => Trong khoảng giữa có 2 vị trí trùng nhau.

Vị trí 4:  k1 = 15 ; k2 = 12

  - Với cặp\(\lambda_2;\lambda_3:\)  \(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{6}{5}=\frac{12}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k2 = 12 ; k3 = 10  thì có tất cả 3 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k2 = 6 ; k3 = 5                     \(\Rightarrow\) Trong khoảng giữa có 1 vị trí trùng nhau.

Vị trí 3:  k2 = 12 ; k3 = 10

- Với cặp \(\lambda_1;\lambda_3:\)    \(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{2}=\frac{6}{4}=\frac{9}{6}=\frac{12}{8}=\frac{15}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k3 = 10  thì có tất cả 6 vị trí trùng nhau

Vị trí 1: VSTT 

Vị trí 2:  k1 = 3   ;  k3 = 2

Vị trí 3:  k1 = 6   ;  k3 = 4

Vị trí 4:  k1 = 9   ;  k3 = 6                                     \(\Rightarrow\) Trong khoảng giữa có 4 vị trí trùng nhau.

Vị trí 5:  k1 = 12 ;  k3 = 8

Vị trí 6:  k1 = 15 ;  k3 = 10

Vậy tất cả có 2 + 1 +4 = 7 vị trí trùng nhau của các bức xạ.

Số VS quan sát được = Tổng số VS tính toán – Số vị trí trùng nhau       = 34 – 7 = 27 vân sáng.  

\(\rightarrow D\)   

3 tháng 5 2016

ok

11 tháng 1 2016

     \(x_s= k\frac{\lambda D}{a}.\) 
     \(d_2-d_1 = \frac{x_sa}{D}= k\lambda\)

=>\(k= \frac{d_2-d_1}{\lambda}=\frac{1,5.10^{-6}}{\lambda}.(1)\)

Thay các giá trị của bước sóng \(\lambda\)1, \(\lambda\)2,\(\lambda\)3 vào biểu thức (1) làm sao mà ra số nguyên thì đó chính là vân sáng của bước sóng đó.

\(\frac{1,5.10^{-6}}{750.10^{-9}}=2.\)(chọn)
\(\frac{1,5.10^{-6}}{675.10^{-9}}=2,222.\)(loại)
\(\frac{1,5.10^{-6}}{600.10^{-9}}=2,5.\)(loại)