K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số tiền người 1, người 2, người 3 nhận được lần lượt là a,b,c

Theo đề, ta có: a/96=b/120=c/112

=>a/12=b/15=c/14

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{12}=\dfrac{b}{15}=\dfrac{c}{14}=\dfrac{a+b+c}{12+15+14}=\dfrac{3280000}{41}=8000\)

Do đó: a=96000; b=120000; c=112000

15 tháng 3 2017

2.

a) +) ta co: tam giác GLO

GL = 6, LO = 8, OG = 10

=> GL < LO < GO ( 6<8<10)

=> góc O < góc G < góc L ( quan hệ giữa góc và cạnh đối diện trong tam giác LOG )

+) ta co: tam giac UVW

góc V = 40, góc U = 50

=> góc W = 180 - ( góc V + goc Ư )

= 180 - ( 50 + 40)

= 90

=> góc V < góc U < góc W

=> UW < VW < VU ( quan hệ giữa cạnh và góc trong tam giác ACB )

15 tháng 3 2017

Bài 1 de rồi bạn tự làm nhé!!

29 tháng 8 2017

lê tiến trường

\(\left|x-564\right|=532\)

\(\Rightarrow\left[{}\begin{matrix}x-564=532\\x-564=-532\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=532+564=1096\\x=\left(-532\right)+564=32\end{matrix}\right.\)

Vậy x = 1096 và x = 32

29 tháng 8 2017

TH1: x-564=532

x= 532+564

x= 1098

TH2: x-564=-532

x= -532+564

x= 34

X thuộc( phải bằng dau) \(\left\{34,1098\right\}\)

7 tháng 10 2017

\(\left(x-3\right).\left(x-2015\right)< 0\)

\(\Rightarrow\left(x-3\right)và\left(x-2015\right)\) phải khác dấu

\(\Rightarrow\left(x-3\right)< \left(x-2015\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x-3>0\\x-2015< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>3\\x< 2015\end{matrix}\right.\)

\(\Rightarrow3< x< 2015\)

\(\Rightarrow x\in\left\{4;5;6;7;8;...;2013;2014\right\}\)

( ko bt đúng hay sai nx )

7 tháng 10 2017

thám tử

\(\left(x-3\right)\left(x-2015\right)< 0\)

Với mọi \(x\in R\) thì:

\(x-2015< x-3\)

Khi đó: \(\left\{{}\begin{matrix}x-2015< 0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2015\\x>3\end{matrix}\right.\)

Nên \(3< x< 2015\)

19 tháng 3 2017

Ta có:\(2009^{20}=\left(2009^2\right)^{10}=4036081^{10}< 20092009^{10}\)

Vậy \(2009^{20}< 20092009^{10}\)

17 tháng 3 2017

/ x - 1 / là giá trị tuyệt đối à ?

ko ạ chỉ có x+3 ở câu a thôi

2 tháng 3 2017

Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)

Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)

\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)

Dấu \("="\) xảy ra khi:

\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)

Vậy \(1\le x\le5.\)

2 tháng 3 2017

Cho mk thêm cái ạ:

\(x\in\left\{1;2;3;4;5\right\}\)

Vậy \(x\in\left\{1;2;3;4;5\right\}\)

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)

để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Vậy.....

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)

19 tháng 8 2017

không có câu hỏi sao trả lời

19 tháng 8 2017

Ta có hình vẽ:

x x' O y y' \(\widehat{xOy}+\widehat{yOx'}+\widehat{x'Oy'}=297^o\)

\(\widehat{xOy}\)\(\widehat{x'Oy'}\) đối đỉnh \(\Rightarrow\widehat{xOy}=\widehat{x'Oy'}\)

\(\widehat{x'Oy}\)\(\widehat{x'Oy'}\) kề bù nên:

\(\widehat{x'Oy'}+\widehat{x'Oy}=180^o\)

\(\Rightarrow\widehat{xOy}+180^0=297^o\)

\(\Rightarrow\widehat{xOy}=117^o\)

\(\widehat{xOy}=\widehat{x'Oy'}=117^o\)

\(\Rightarrow\widehat{x'Oy}=297^o-117^o-177^o=3^o\)

\(\widehat{x'Oy}\) đối đỉnh với \(\widehat{xOy'}\) nên

\(\widehat{x'Oy}=\widehat{xOy'}=3^o\)

Vậy...

30 tháng 8 2017

>> Mình không chép lại đề bài nhé ! <<

Cách 1 :

\(A=\left(\dfrac{36-4+3}{6}\right)-\left(\dfrac{30+10-9}{6}\right)-\left(\dfrac{18-14+15}{6}\right)=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}=-\dfrac{15}{6}=-\dfrac{5}{2}\)

Cách 2 :

\(A=6-\dfrac{2}{3}+\dfrac{1}{2}-5+\dfrac{5}{3}-\dfrac{3}{2}-3-\dfrac{7}{3}+\dfrac{5}{2}\)

\(A=\left(6-5-3\right)-\left(\dfrac{2}{3}+\dfrac{5}{3}-\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)

\(A=-2-0-\dfrac{1}{2}=-\dfrac{5}{2}\)

30 tháng 8 2017

Cách 1 :

\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)

\(=\left(\dfrac{36}{6}-\dfrac{4}{6}+\dfrac{3}{6}\right)-\left(\dfrac{30}{6}+\dfrac{10}{6}-\dfrac{9}{6}\right)-\left(\dfrac{18}{6}-\dfrac{14}{6}+\dfrac{15}{6}\right)\)

\(=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}\)

\(=-\dfrac{5}{2}\)

Cách 2 :

\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)

\(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)

\(=\left(6-5-3\right)+\left(\dfrac{-2}{3}+\dfrac{-5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{-5}{2}\right)\)

\(=\left(-2\right)+0+\dfrac{-1}{2}\)

\(=\dfrac{-5}{2}\)