K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

Diện tích bề mặt của mỗi tầng (kể từ tầng 1) lập thành một cấp số nhân có công bội 

Khi đó diện tích mặt trên cùng là: 

Chọn A.

10 tháng 11 2018

Đáp án C

1 tháng 4 2016

THeo đề bài, đường kính của hình tròn đáy của nón bằng 2a. Vậy bán kính R = a.

Chiều cao của hình nón bằng chiều cao của tam giác đều, nên h = a√3 và

đường sinh l =  = 2a.

Vậy diện tích xung quanh của hình nón là:

                            Sxq = πRl = 2a2π ( đơn vị diện tích).

Thể tích khối nón là:

                             .

 

1 tháng 4 2016

Câu hỏi nào của Võ Nguyễn Thái cũng có Võ Đoong Anh Tuấn làm,có khúc mắc 

30 tháng 6 2017

11 tháng 2 2016

mình tưởng bạn xong rồi màbucminh

9 tháng 10 2015

\(\left(C_1\right)\) có dạng \(y=x^3-3x\)

Gọi điểm A(a;2) là điểm kẻ đc 3 tiếp tuyến đến C do đề bài yêu cầu tìm điểm thuộc đường thẳng y=2

ta tính \(y'=3x^2-3\)

gọi \(B\left(x_0;y_0\right)\) là tọa độ tiếp điểm 

phương trình tiếp tuyến tại điểm B có dạng 

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0\)

suy ra ta có \(y=\left(3x^2_0-3\right)\left(x-x_0\right)+x_0^3-3x_0\)

do tiếp tuyến đi qua điểm A suy ra tọa độ của A thỏa mãn pt tiếp tuyến ta có

\(2=\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0\Leftrightarrow-\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0-2=0\Leftrightarrow-3\left(x_0-1\right)\left(1+x_0\right)\left(a-x_0\right)+\left(1+x_0\right)^2\left(x_0-2\right)=0\)(*)

từ pt * suy ra đc 1 nghiệm \(x_0+1=0\Rightarrow x_0=-1\) hoặc\(-3\left(x_0-1\right)\left(a-x_0\right)+\left(1+x_0\right)\left(x_0-2\right)=0\)(**)

để qua A kẻ đc 3 tiếp tuyến thì pt (*) có 3 nghiệm phân biệt

suy ra pt (**) có 2 nghiệm phân biệt khác -1  

từ đó ta suy ra đc a để pt có 2 nghiệm phân biệt khác -1

suy ra đc tập hợ điểm A để thỏa mãn đk bài ra

20 tháng 2 2016

cái này bạn nên olm mà hỏi

20 tháng 2 2016

294 là diện tích toàn phần.

343 là thể tích .

5 tháng 6 2018

Đáp án C 

Xét trường hợp  A P P C = k   , lúc này M P // B C  nên  B C // M N P   .

Ta có:  N ∈ M N P ∩ B C D B C // M N P B C ⊂ B C D ⇒ B C D ∩ M N P = N Q // B C ,   Q ∈ B D   .

Thiết diện là tứ giác MPNQ.

Xét trường hợp A P P C ≠ k .

Trong A B C  gọi R = B C ∩ M P .

Trong   B C D gọi   Q = N R ∩ B D thì thiết diện là tứ giác MNPQ.

Gọi  K = M N ∩ P Q   . Ta có S M N P S M N P Q = P K P Q .

Do   A M N B = C N N D nên theo định lí Thales đảo thì A C , N M , B D  lần lượt thuộc ba mặt phẳng song song với nhau và đường thẳng PQ cắt ba mặt phẳng này tương ứng tại P, K, Q nên áp dụng định lí Thales ta được  P K K Q = A M M B = C N N D = k

⇒ P K P Q = P K P K + K Q = P K K Q P K K Q + 1 = k k + 1