Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáy bé miếng bìa hình thang là:
36 x \(\frac{5}{6}\)= 30 (cm)
a) Diện tích miếng bìa là:
20 x ( \(\frac{36+30}{2}\)) = 660 (cm)
b) Tự làm
Hỏi ngu tí nha: hình thang có đáy lớn bằng đáy bé à ??? nếu thế thì còn gì là lớn và bé nữa.... không biết có phải hình bình hành hoặc là hình chữ nhật........
mình viết nhầm đó
một miếng bìa hình thang có đáy lớn 36 cm ,dáy bé bằng5/6đáy lớn, chiều cao 20cm
a) Tính diện tích miếng bìa
b)Hãy cắt miếng bìa thành 3 phần bằng nhau mà không cạnh nào của miếng bìa bị cắt(vẽ hình)
Toán 10 hay toán 5 vậy???
a)Sxq=\(4a^2=4.56,25=225\left(dm^2\right)\)
b)Stp\(=6a^2=6.56,25=337,5\left(dm^2\right)\)
a) Chiều rộng của tấm bìa là \(\overline R = 170 \pm 2mm\), nghĩa là chiều rộng gần đúng \(R = 170\)với độ chính xác \(d = 2\)
Suy ra kích thước chiều rộng nằm trong khoảng \(\left[ {170 - 2;170 + 2} \right]\) hay \(\left[ {168;{\rm{ }}172} \right].\)
Tương tự, chiều dài của tấm bìa là \(\overline D = 240 \pm 2mm\)
Vậy kích thước chiều dài nằm trong khoảng \(\left[ {240 - 2;240 + 2} \right]\) hay \([238;242]\)
b) Chiều rộng gần đúng là 170 mm, chiều dài gần đúng là 240 mm.
Khi đó, diện tích tấm bìa là \(S = 170.240 = 40800\;(m{m^2})\)
Diện tích đúng, kí hiệu \(\overline S \), của tấm bìa trên thỏa mãn:
\(168.238 < \overline S < 172.242 \Leftrightarrow 39984 < \overline S < 41624\)
Do đó \(39984 - 40800 < \overline S - 40800 < 41624 - 40800\) hay \( - 816 < \overline S - S < 824 \Rightarrow \left| {\overline S - S} \right| < 824\)
Vậy diện tích tấm bìa là \(40800 \pm 824\;\left( {m{m^2}} \right)\)
Cách 2:
Diện tích tấm bìa là:
\(\overline S = \left( {170 \pm 2} \right)\left( {240 \pm 2} \right) = 170.240 \pm \left( {170.2 + 240.2 + 2.2} \right) = 40800 \pm 824\left( {m{m^2}} \right)\)
Vậy diện tích tấm bìa là \(40800 \pm 824\;\left( {m{m^2}} \right)\)
a) Mỗi phần tử của không gian mẫu là một tổ hợp chập 3 của 4 phần tử. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega \right) = C_4^3\) ( phần tử)
b) +) Sự kiện “Tổng các số trên ba tấm bìa bằng 9” tương ứng với biến cố \(A = \left\{ {\left( {4;3;2} \right)} \right\}\)
+) Sự kiện “Các số trên ba tấm bìa là ba số tự nhiên liên tiếp” tương ứng với biến cố \(B = \left\{ {\left( {1;2;3} \right),\left( {2;3;4} \right)} \right\}\)
c) +) Ta có: \(n\left( A \right) = 1\),\(n\left( B \right) = 2\)
+) Vậy xác suất của biến cố A và B là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{1}{4};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\)
Diện tích toàn phần cái hộp là:
\(2,5\cdot2,5\cdot2,5=15,625\left(dm^2\right)\)
Diện tích đáy hộp là:
\(2,5\cdot2,5=6,25\left(dm^2\right)\)
Diện tích miếng bìa cần dùng là:
\(15,625-6,25=9,375\left(dm^2\right)\)