Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 10: Một học sinh thả 300g nhôm ở 850C vào 440g nước ở 74,50C làm cho nước nóng tới 760C.
a) Hỏi nhiệt độ của nhôm ngay khi có cân bằng nhiệt?
b) Tính nhiệt lượng nước thu vào biết nhiệt dung riêng của nước là 4200J/kg.K.
c) Tính nhiệt dung riêng của nhôm.
Nước nóng lên thêm:
\(Q=m.c.\Delta t\rightarrow\Delta t=\dfrac{Q}{m.c}=\dfrac{21000}{1.4200}=5^oC\)
Nước nóng thêm số độ là
\(\Delta t^o=\dfrac{Q}{mc}=\dfrac{840000}{20.4200}=10^o\)
\(V=1,5l\Rightarrow m=1,5kg\)
Độ tăng nhiệt độ của nước:
\(Q=mc\Delta t\)
\(\Rightarrow\Delta t=\dfrac{Q}{mc}=\dfrac{315000}{1,5\cdot4200}=50^oC\)
Nhiệt độ của vật tăng 28,6 độ C
1.5 lít nước = 1.5 kg nước
ĐỘ tăng nhiệt độ của nước khi được cung cấp nhiệt lượng là:
Q = mcΔt ⇔ 315000 = 1.5 x 4200 x Δt ⇒ Δt = 50∘C
Tóm tắt
\(V=10l\Rightarrow m=10l\\ Q=840kJ=840000J\\ c=4200J/kg.K\)
_____________
\(\Delta t=?^0C\)
Giải
Nhiệt độ mà nước nòng lên thêm là:
\(Q=m.c.\Delta t\Rightarrow\Delta t=\dfrac{Q}{m.c}=\dfrac{840000}{10.4200}=20^0C\)
\(V=10\left(l\right)\Rightarrow m=10\left(kg\right)\\ Q=840\left(kJ\right)=840000\left(J\right)\\ \Leftrightarrow m.c.\Delta t=840000\\ \Leftrightarrow\Delta t=\dfrac{840000}{m.c}=\dfrac{840000}{4200.10}=20^oC\)
Vậy nước nóng lên thêm 20oC
Có nghĩa là để cho nước tăng thêm 1oC cần cung cấp 4200J
Nước nóng lên thêm
\(=21000:4200=5^oC\)
Tóm tắt:
\(m_1=10kg\)
\(m_2=5kg\)
\(t_1=25^oC\)
\(t_2=80^oC\)
\(\Rightarrow\Delta t=t_2-t_1=80-25=65^oC\)
\(c_1=460J/kg.K\)
\(c_2=4200J/kg.K\)
=======
a) \(Q_2=?J\)
b) \(Q=?J\)
c) \(m_3=6kg\)
\(t_1=150^oC\)
\(t_2=25^oC\)
\(c_3=380J/kg.K\)
\(t=?^oC\)
a) Nhiệt lượng mà nước thu vào:
\(Q_2=m_2.c_2.\Delta t=5.4200.65=1365000J\)
b) Nhiệt lượng cần cung cấp cho thùng nước nóng lên:
\(Q=Q_1+Q_2\)
\(\Leftrightarrow Q=m_1.c_1.\Delta t+1365000\)
\(\Leftrightarrow Q=10.460.65+1365000\)
\(\Leftrightarrow Q=299000+1365000\)
\(\Leftrightarrow Q=1664000J\)
c) Do nhiệt lượng của đồng tỏa ra bằng nhiệt lượng nước thu vào nên ta có phương trình cân bằng nhiệt:
\(Q_2=Q_3\)
\(\Leftrightarrow m_2.c_2.\left(t_1-t\right)=m_3.c_3.\left(t-t_2\right)\)
\(\Leftrightarrow6.380.\left(150-t\right)=5.4200.\left(t-25\right)\)
\(\Leftrightarrow342000-2280t=21000t-525000\)
\(\Leftrightarrow867000=23280t\)
\(\Leftrightarrow t=\dfrac{867000}{23280}\approx37,24\)
a) Nhiệt lượng nước thu vào:
Ta có: khối lượng nước m = 5kg, nhiệt dung riêng của nước c_nước = 4200J/kg.K, và ΔT = 80°C - 25°C = 55°C.Vậy nhiệt lượng nước thu vào là: Q = mc_nướcΔT = 5420055 = 1155000 (J)b) Nhiệt lượng cần cung cấp để thùng nước nóng lên 80°C:
Ta có: khối lượng của thùng và nước là m = 10kg, nhiệt dung riêng của sắt c_sắt = 460J/kg.K, và ΔT = 80°C - 25°C = 55°C.Để nóng lên 80°C, thì nhiệt lượng cần cung cấp cho thùng và nước là: Q = m*(c_sắtΔT + c_nướcΔT) = 10*(46055 + 420055) = 2491000 (J)c) Tính nhiệt độ khi có cân bằng nhiệt:
Ta dùng công thức: m1c1(Tf - Ti) + m2c2(Tf - Ti) = 0Trong đó: m1 = 6kg (khối lượng đồng), c1 = 380J/kg.K (nhiệt dung riêng của đồng), Ti = 150°C (nhiệt độ ban đầu của đồng), m2 = 5kg (khối lượng nước), c2 = 4200J/kg.K (nhiệt dung riêng của nước).Giải phương trình ta được: Tf = (m1c1Ti + m2c2Ti)/(m1c1 + m2c2) = (6380150 + 5420025)/(6380 + 54200) ≈ 32.7°C.Vậy khi có cân bằng nhiệt, nhiệt độ của hỗn hợp là khoảng 32.7°C.
Ấm nước này nóng lên số độ là
\(\Delta t^o=\dfrac{Q}{m_1c_1+m_2c_2}=\dfrac{268000}{0,8.380+2.4200}=30,79^o\approx31^o\)
a) Ta có: \(Q=mc\Delta t=2\cdot4200\cdot\left(100-30\right)=588000\left(J\right)=588\left(kJ\right)\)
b) Ta có: \(Q=mc\Delta t=5\cdot4200\cdot\left(t-20\right)=840000\left(J\right)\)
\(\Rightarrow t=60^oC\)
a, Nhiệt lượng cần thiết để đun sôi nước từ 30o đến 100o là:
Q=m.c.Δt
=2.4200. (100-30)
= 588000J
b, Ta có:
Q'=m'.c'.Δ't
840000= 5.4200. (t-20)
t=60o
Vậy nước nóng 60o