K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2015

Ta có:\(x^3-6x^2-25x-18=0\Leftrightarrow x^3+2x^2-8x^2-16x-9x-18=0\Leftrightarrow x^2\left(x+2\right)-8x\left(x+2\right)-9\left(x+2\right)=0\)\(\Leftrightarrow\left(x+2\right)\left(x^2+x-9x-9\right)=0\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(x-9\right)=0\)

Vậy x=-2;-1;9 hay x min = -2

25 tháng 1 2019

\(x^3-6x^2-25x-18=0\)

<=>   \(x^3-9x^2+3x^2-27x+2x-18=0\)

<=>  \(x^2\left(x-9\right)+3x\left(x-9\right)+2\left(x-9\right)=0\)

<=>  \(\left(x-9\right)\left(x^2+3x+2\right)=0\)

<=>  \(\left(x-9\right)\left(x+1\right)\left(x+2\right)=0\)

..................

làm nốt

1 tháng 9 2016

\(x^3-6x^2-25x-18=0\)

\(\Leftrightarrow x^2\left(x+1\right)-7x\left(x+1\right)-18\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-7x-18\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x-9x-18\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x\left(x+2\right)-9\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x+2=0\\x-9=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=-2\\x=9\end{array}\right.\)

Vậy nghiệm nhỏ nhất của phương trình là \(-2\)

9 tháng 2 2016

Ta có:x^3-6x^2-25x-18=0 <=> x^3+2x^2-8x^2-16x-9x-18=0

<=> x^2 (x+2)-8x(x+2)-9(x+2)=0  <=> (x+2)(x2+x−9x−9)=0⇔(x+2)(x+1)(x−9)=0

Vậy x=-2;-1;9 hay x min = -2

9 tháng 2 2016

chúc cậu năm mới vui vẻ

10 tháng 10 2019

a) Cách 1: Khai triển HĐT rút gọn được 3 x 2  + 6x + 7 = 0

Vì (3( x 2  + 2x + 1) + 4 < 0 với mọi x nên giải được  x ∈ ∅

Cách 2. Chuyển vế đưa về ( x   +   3 ) 3 =  ( x   - 1 ) 3  Û x + 3 = x - 1

Từ đó tìm được x ∈ ∅

b) Đặt  x 2  = t với t ≥ 0 ta được  t 2  + t - 2 = 0

Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)

Từ đó tìm được x = ± 1

c) Biến đổi được 

d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x{0; 2; 4}

27 tháng 10 2021

b: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\\x=-1\end{matrix}\right.\)

c: \(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\\x=-5\end{matrix}\right.\)

a: =>x^3+2x^2-8x^2-16x+15x+30=0

=>(x+2)(x^2-8x+15)=0

=>(x+2)(x-3)(x-5)=0

=>\(x\in\left\{-2;3;5\right\}\)

b: =x^2-12x+36-3

=(x-6)^2-3>=-3

Dấu = xảy ra khi x=6

7 tháng 3 2023

1. A

2. D

3. A

4. A

9 tháng 1 2021

Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).

Vậy pt vô nghiệm nguyên.

9 tháng 1 2021

2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

PT $\Leftrightarrow x^3+3x-5=x^2y+2y=y(x^2+2)$

$\Rightarrow y=\frac{x^3+3x-5}{x^2+2}$

Để $y$ nguyên thì $x^3+3x-5\vdots x^2+2$

$\Leftrightarrow x(x^2+2)+x-5\vdots x^2+2$

$\Leftrightarrow x-5\vdots x^2+2(1)$

$\Rightarrow x^2-5x\vdots x^2+2$

$\Leftrightarrow x^2+2-(5x+2)\vdots x^2+2$

$\Leftrightarrow 5x+2\vdots x^2+2(2)$

Từ $(1);(2)\Rightarrow 5(x-5)-(5x+2)\vdots x^2+2$

$\Leftrightarrow 27\vdots x^2+2$. Do $x^2+2\geq 2$ nên:

$\Rightarrow x^2+2\in\left\{3;9;27\right\}$

$\Rightarrow x^2\in\left\{1;7;25\right\}$

Do $x$ nguyên nên $x\in\left\{\pm 1; \pm 5\right\}$

Thay vào $y$ ta tìm được: 

$x=-1\Rightarrow y=-3$

$x=5\Rightarrow y=5$