Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a = 1999
Khi đó biểu thứ tương đương với: \(\dfrac{x}{\left(x+a\right)^2}\)
\(=\dfrac{\left(x+x\right)^2-\left(x+a\right)^2-4}{4a\left(x+a\right)^2}\)
\(=\dfrac{\left(x+a\right)^2-\left(x-a\right)^2}{4a\left(x+a\right)^2}=\dfrac{1}{4a}-\dfrac{\left(x-a\right)^2}{4a\left(x+a\right)^2}\le\dfrac{1}{4a}\) (với \(a>0\), \(x>0\))
Vì \(a>0\) nên \(4a\left(x+a\right)^2\ge0\Rightarrow-\dfrac{\left(x-a\right)^2}{4a\left(x+a\right)^2}\le0\forall x\)
\(\Rightarrow\dfrac{x}{\left(x+1999\right)^2}=\dfrac{1}{4a}\Leftrightarrow x=a\)
Thay \(x=1999\) ta có giá trị lớn nhất của biểu thức \(\dfrac{x}{\left(x+1999\right)^2}=\dfrac{1}{4.1999}\Leftrightarrow x=1999\)
A=(x+9)(x+7)(x-3)
A có nghiệm <=> (x+9)(x+7)(x-3)=0 <=> x+9=0 hoặc x+7=0 hoặc x-3=0
<=> x=-9 hoặc -7 hoặc 3
Vậy x=3 là nghiệm lớn nhất của A
Đặt \(A=\left(x+9\right)\left(x+7\right)\left(x-3\right)\)
Mà A = 0
\(\Rightarrow\hept{\begin{cases}x+9=0\\x+7=0\\x-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-9\\x=-7\\x=3\end{cases}}}\)
Vì \(-9< -7< 3\)nên 3 là nghiệm lớn nhất của đa thức A
Vậy nghiệm lớn nhất của đa thức A là 3
Chúc bạn học tốt!
`a)6x(x-1999)-x+1999=0`
`<=>6x(x-1999)-(x-1999)=0`
`<=>(x-1999)(6x-1)=0`
`<=>` \(\left[ \begin{array}{l}x-1999=0\\6x-1=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=1999\\x=\dfrac16\end{array} \right.\)
`b)x^2-9-4(x+3)=0`
`<=>(x-3)(x+3)-4(x+3)=0`
`<=>(x+3)(x-3-4)=0`
`<=>(x+3)(x-7)=0`
`<=>` \(\left[ \begin{array}{l}x+3=0\\x-7=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=7\\x=-3\end{array} \right.\)
b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=3
d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=2
\(A\left(x\right)=\frac{x}{\left(x+1999\right)^2}max\)
<=> (x + 1999)2 min
Mà (x + 1999)2 > 0 nên (x + 1999)2 min = 0 <=> x = -1999
Vậy GTLN của A(x) là 0 <=> x = -1999
Cách trình bày của ĐTV sai trầm trọng, lp 8 ko thể trình bày như thế
Lơ giải:
$6x(x-1999)-x+1999=0$
$\Leftrightarrow 6x(x-1999)-(x-1999)=0$
$\Leftrightarrow (x-1999)(6x-1)=0$
$\Rightarrow x-1999=0$ hoặc $6x-1=0$
$\Rightarrow x=1999$ hoặc $x=\frac{1}{6}$
$\Rightarrow$ nghiệm lớn nhất của đa thức là $1999$.
6x2-11995x-1999=0
<=> (x-1999,333306)(x+0.1666388819)=0
=> nghiệm lớn nhất của đa thức là 1999,333306