\(a,b,c\) là ba số dương thỏa mãn điều kiện \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{1^2}{2\cdot1}=\frac{1}{2}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b=c=1/3

Sửa đề:  Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)

Áp dụng bđt Cauchy-Schwarz ta có:

\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)

Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)

          \(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)

Cộng từng vế các bđt trên ta được

\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c=1

15 tháng 10 2017

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

15 tháng 10 2017

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.

4 tháng 11 2019

CM BĐT : \(\left(x^2+y^2+z^2\right)^2\ge3\left(x^3y+y^3z+z^3x\right)\)   ( * )

\(\frac{a}{ab+1}=\frac{a\left(ab+1\right)-a^2b}{ab+1}=a-\frac{a^2b}{ab+1}\)

TT ....

Áp dụng BĐT ( * ) với x = \(\sqrt{a}\); y = \(\sqrt{b}\); z = \(\sqrt{c}\) vào bài toán, ta có :

\(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}=a+b+c-\frac{a^2b}{ab+1}-\frac{b^2c}{bc+1}-\frac{c^2a}{ac+1}\)

\(\ge3-\frac{a^2b}{2\sqrt{ab}}-\frac{b^2c}{2\sqrt{bc}}-\frac{c^2a}{2\sqrt{ac}}=3-\frac{\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

24 tháng 4 2017

Nhân 2 vế của \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\) có: \(ab+bc+ca=abc\)

Ta có: 

\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a^2}{a+bc}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\)

\(\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(a+c\right)}\cdot\frac{a+b}{8}\cdot\frac{a+c}{8}}=\frac{3a}{4}\)

Tương tự cho 2 BĐT còn lại ta có:

\(\frac{b^2}{b+ca}+\frac{a+b}{8}+\frac{b+c}{8}\ge\frac{3b}{4};\frac{c^2}{c+ab}+\frac{a+c}{8}+\frac{b+c}{8}\ge\frac{3c}{4}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT+\frac{4\left(a+b+c\right)}{8}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow VT+\frac{4\left(a+b+c\right)}{8}\ge\frac{6\left(a+b+c\right)}{8}\)

\(\Leftrightarrow VT\ge\frac{a+b+c}{4}=VP\). Ta có ĐPCM

1,

\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)