Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1-x-2x^2}=\sqrt{\left(1+x\right)\left(1-2x\right)}\le\dfrac{1+x-2x+1}{2}=\dfrac{-x+2}{2}\)
(AM-GM)
do đó \(A\le\dfrac{x}{2}+\dfrac{-x+2}{2}=1\)
Dấu = xảy ra khi 1+x=1-2x <=> x=0 (tmđk)
a) Đặt \(t=\sqrt{2x^2-3x+5}\ge0\) thì
\(2t=t^2-11\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1+2\sqrt{3}\\t=1-2\sqrt{3}\end{matrix}\right.\)
Vì \(t\ge0\) nên \(t=1+2\sqrt{3}\)
\(\Rightarrow\sqrt{2x^2-3x+5}=1+2\sqrt{3}\)
\(\Leftrightarrow2x^2-3x+5=13-4\sqrt{3}\)
\(\Leftrightarrow2x^2-3x-8+4\sqrt{3}=0\)
Giải pt trên tìm được x
c) ĐK: \(x\ge0\)
Đặt \(a=\sqrt{x}\ge0;b=\sqrt{x+3}\ge0\)
pt trên đc viết lại thành
\(2b^2+2ab=4\left(a+b\right)\)
\(\Leftrightarrow\left(b-2\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\a=-b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{x}=-\sqrt{x+3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=x+3\end{matrix}\right.\)
Vậy pt có 1 nghiệm duy nhất x = 1.
b) ĐK: tự làm
Ta có \(\left(x+5\right)\left(2-x\right)=-x\left(x+3\right)+10\)
Đặt \(a=\sqrt{x}\ge0;b=\sqrt{x+3}\ge0\)
pt trên đc viết lại thành
\(-a^2b^2+10=3ab\)
\(\Leftrightarrow-a^2b^2-3ab+10=0\) (*)
Đặt \(t=ab\ge0\) thì (*) \(\Rightarrow-t^2-3t+10=0\)
\(\Leftrightarrow\left[{}\begin{matrix}ab=t=2\\ab=t=-5\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x\left(x+3\right)}=2\)
Bạn tự làm tiếp nhé
1, đk: \(x>0\) và \(x\ne4\)
Ta có: A=\(\dfrac{1}{2\sqrt{x}-x}=\dfrac{1}{-\left(x-2\sqrt{x}+1\right)+1}=\dfrac{1}{-\left(\sqrt{x}-1\right)^2+1}\)
Ta luôn có: \(-\left(\sqrt{x}-1\right)^2\le0\) với \(x>0\) và \(x\ne4\)
\(\Rightarrow-\left(\sqrt{x}-1\right)^2+1\le1\)
\(\Rightarrow A\ge1\). Dấu "=" xảy ra <=> x=1 (t/m)
Vậy MinA=1 khi x=1
2, đk: \(x\ge0;x\ne1;x\ne9\)
Ta có: B=\(\dfrac{1}{x-4\sqrt{x}+3}=\dfrac{1}{\left(x-4\sqrt{x}+4\right)-1}=\dfrac{1}{\left(\sqrt{x}-2\right)^2-1}\)
Ta luôn có: \(\left(\sqrt{x}-2\right)^2\ge0\) với \(x\ge0;x\ne1;x\ne9\)
\(\Rightarrow\left(\sqrt{x}-2\right)^2-1\ge-1\)
\(\Rightarrow B\le-1\). Dấu "=" xảy ra <=> x=4 (t/m)
Vậy MaxB=-1 khi x=4
3, đk: \(x\ge0;x\ne15+4\sqrt{11}\)
Ta có: C=\(\dfrac{1}{4\sqrt{x}-x+7}=\dfrac{1}{-\left(x-4\sqrt{x}+4\right)+11}=\dfrac{1}{-\left(\sqrt{x}-2\right)^2+11}\)
Ta luôn có: \(-\left(\sqrt{x}-2\right)^2\le0\) với \(x\ge0;x\ne15+4\sqrt{11}\)
\(\Rightarrow-\left(\sqrt{x}-2\right)^2+11\le11\)
\(\Rightarrow C\ge\dfrac{1}{11}\). Dấu "=" xảy ra <=> x=4 (t/m)
Vậy MinC=\(\dfrac{1}{11}\) khi x=4
Dùng BĐT Bunhiacopski:
Ta có: \(ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)
Mà \(\left(a+c\right)^2+\left(b+d\right)^2\)
\(=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)
\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}+c^2+d^2\)
\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\) (Đpcm)
Câu hỏi của Hoàng Khánh Linh - Toán lớp 8 - Học toán với OnlineMath copy nhớ ghi nguồn
(x+y)2=x2+2xy+y2=1+ 2xy cái này phải phụ thuoc vào max hay min thì mới biệ luận tiếp
cũng giống như đi cày quên trâu đấy