Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sua dau bai la CMR neu p va 10p-1 la 2 so nguyen to ,p>3 thi p+1 chia het cho 6
Vi p la 2 so nguyen to suy ra p la so le suy ra p+1 la so chan suy ra p+1 chia het cho 2(1)
Vi p la so nguyen to lon hon 3 nen p co 2 dang:
3k+1;3k+2(k thuoc N*)
Voi p =3k+1
Ta co:10p-1=10(3k+1)-1=10x3k+10-1=10X3k+9=3(10k+3)
Voi k thuoc N* suy ra 3(10k+3) chia het cho 3 va 3(10k+3)>3 suy ra 3(10k+3) la hop so hay 10p-1 la hop so(loai)
Voi p=3k+2
Ta có p+1=3k+2+1=3k+3=3(k+1)
Với k thuộc N* suy ra 3(k+1) chia hết cho 3 suy ra p+1 chia het cho 3(2)
Ma (2;3)=1(3)
Từ(1);(2);(3) suy ra p+1 chia hết cho 2x3
hay p+1 chia het cho 6
Vay neu p va 10p-1 la 2 so nguyen ,p>3 thi p+1 chia het cho 6
ai làm chi tiết cho mik đi mik tick người đó 5 li-ke
Ta xét 3 số tự nhiên liên tiếp p; p+1;p+2
Trong 3 số này luôn có một số chia hết cho 3
Vì p và p+2 đều là số nguyên tố lớn hơn 3 => hai số này ko chia hét cho 3 => p+1 chia hết cho 3 (1)
Vì p là số nguyên tố lớn hơn 3 => p lẻ => p+1 chẵn => p+1 chia hết cho 2 (2)
2 và 3 nguyên tố cùng nhau
Tư (1) và (2) => p+1 chia hết cho 6.
vì p là số nguyên tố lớn hơn 3
suy ra p có 1 trong 2 dạng sau:
p=6k+1 p=6k+5
với p=6k+1 thì p+2=6k+1+2
=6k+3
vì 6k chia hết co 3
3chia hết cho 3
suy ra 6k+3chia hết cho 3
hay(p+2) chia hết cho 3
mà p+2>3
suy ra p+2 là hợp số(loại)
với p=6k+5 thì p+1=6k+1+5
=6k+6
vì 6k chia hết cho 6
6 chia hết cho 6
suy ra (6k+6)chia hết cho 6
hay(p+1)chia hết cho 6
vậy p+1 chia hết cho 6
NHỚ TICK CHO MK NHA BN!
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
Do đó 4p + 1 là hợp số (.)
tick nhé
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)
1) p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
2) a nguyên tố > 3 nên là số lẻ và không chia hết cho 3
=> k phải là số chẳn, vì nếu k lẻ thì a+k chẳn và > 2 nên ko là số nguyên tố
đặt k = 3n+r (với r = 0, 1, 2)
có: thì a+k = 3n+a+r và a+2k = 6n+a+2r
* nếu a chia 3 dư 1 thì a+r chia hết cho 3 nếu r = 2 hoặc a+2r chia hết cho 3 nếu r = 1
nên ta phải có r = 0
* nếu a chia 3 dư 2 thì a+r chia hết cho 3 nếu r = 1 hoặc a+2r chia hết cho 3 nếu r = 2
=> r = 0
cả 2 trường hợp của a đều dẩn đến r = 0 => k chia hết cho 3
Vậy k chẳn, chia hết cho 3 => k chia hết cho 6
3) p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
Tích tớ nha
1) p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
2) a nguyên tố > 3 nên là số lẻ và không chia hết cho 3
=> k phải là số chẳn, vì nếu k lẻ thì a+k chẳn và > 2 nên ko là số nguyên tố
đặt k = 3n+r (với r = 0, 1, 2)
có: thì a+k = 3n+a+r và a+2k = 6n+a+2r
* nếu a chia 3 dư 1 thì a+r chia hết cho 3 nếu r = 2 hoặc a+2r chia hết cho 3 nếu r = 1
nên ta phải có r = 0
* nếu a chia 3 dư 2 thì a+r chia hết cho 3 nếu r = 1 hoặc a+2r chia hết cho 3 nếu r = 2
=> r = 0
cả 2 trường hợp của a đều dẩn đến r = 0 => k chia hết cho 3
Vậy k chẳn, chia hết cho 3 => k chia hết cho 6
3) p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
Kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
Tích nha
p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 ( k thuộc N)
nếu p = 3k+1 thì p+8 = (3k+1)+8 = 3k+9=3.(k+3) chia hết cho 3 (loại)
nếu p = 3k+2 thì p+8 = (3k+2)+9 = 3k +10 có thể là số nguyên tố (chọn)
khi đó p+10= (3k+2)+100=3k+102=3.(k+34) chia hết cho 3
Vậy là hợp số
Vì P > 3 nên P = 3k + 1 hoặc P = 3k + 2.
+Với P = 3k + 1 thì P + 8 = 3k + 1 + 8 = 3k + 9 = 3.( k + 3) chia hết cho 3.
Vì P + 8 vhia hết cho 3 mà P + 8 > 3 nên P + 8 là hợp số ( loại )
+ Với P = 3k + 2 thì P + 100 = 3k + 2 +100 = 3k + 102 =3. (k + 34) chia hết cho 3.
Vì P + 100 chia hết cho 3 mà P + 100 > 3 nên P + 100 là hợp số.
Vậy với P và P + 8 là số nguyên tố ( P > 3) thì P + 100 là hợp số.
p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho (2 . 3) = 6 (đpcm)
p là số nguyên tố >3=>p=3k+1;3k+2
xét p=3k+2=>10p+1=10(3k+2)+1
=3.10k+20+1=3.10k+21=3(10k+7) chia hết cho 3
=>10p+1 là hợp số(trái giả thuyết)
=>p=3k+1
=>5p+1=5(3k+1)+1=3.5k+5+1=3.5k+6=3(5k+2) chia hết cho 3 (1)
p>3=>p=2q+1
=>5p+1=5(2q+1)+1=10q+5+1=10q+6=2(5q+3) chia hết cho 2 (2)
từ (1);(2)=>5p+1 chia hết cho 2;3
vì (2;3)=1=>5p+1 chia hết cho 6
=>đpcm
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$
Do đó $p$ có thể có dạng $3k+1$ hoặc $3k+2$
Nếu $p=3k+1$ thì $p+2=3k+1+2=3(k+1)\vdots 3$, mà $p+2>3$ với mọi $p$ là số nguyên tố nên $p+2$ không thể là số nguyên tố (trái với giả thiết)
Vậy $p$ chỉ có thể có dạng $3k+2$
Khi đó:
\(p+1=3k+2+1=3(k+1)\vdots 3(1)\)
Mặt khác, \(p\in\mathbb{P};p>3\) nên $p$ lẻ, suy ra $p+1$ chẵn hay $p+1\vdots 2(2)$
Từ \((1);(2)\) kết hợp với \((2,3)=1\) nên \(p+1\vdots (2.3=6)\) (đpcm)