Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}-\frac{b}{2a}=\frac{3}{2}\\\frac{4ac-b^2}{4a}=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-3a\\4ac-b^2=a\end{matrix}\right.\) \(\Rightarrow4ac-9a^2=a\Rightarrow c=\frac{9a+1}{4}\)
Mặt khác theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=3\\x_1x_2=\frac{c}{a}=\frac{9a+1}{4a}\end{matrix}\right.\)
\(x_1^3+x_2^3=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=9\)
\(\Leftrightarrow27-9\left(\frac{9a+1}{4a}\right)=9\)
\(\Leftrightarrow12a-9a-1=4a\Rightarrow a=-1\)
\(\Rightarrow b=3\) ; \(c=-2\)
\(P=6\)
ai đó giúp mình với mình còn 3 tiếng nữa là tới hạn nộp bài rồi :(((
Từ pt ta có: \(-\left(1+x^4\right)=\text{ax}^3+bx^2+cx\)
Áp dụng BĐT B.C.S:
\(\left(1+x^4\right)^2=\left(\text{ax}^3+bx^2+cx\right)^2\le\left(a^2+b^2+c^2\right)\left(x^6+x^4+x^2\right)\)\(\Rightarrow\left(a^2+b^2+c^2\right)\ge\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\left(1\right)\)
Mặt khác: \(\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\ge\frac{4}{3}\left(2\right)\)
Thật vậy: \(\left(2\right)\Leftrightarrow3\left(1+2x^4+x^8\right)\ge4\left(x^6+x^4+x^2\right)\)
\(\Leftrightarrow3x^8-4x^6+2x^4-4x^2+3\ge0\)
\(\Leftrightarrow\left(x^2-1\right)^2\left(3x^4+2x^2+3\right)\ge0\)(luôn đúng)
Từ 1 và 2 : \(a^2+b^2+c^2\ge\frac{4}{3}\)
Dấu '=' xảy ra khi và chỉ khi \(\orbr{\begin{cases}a=b=c=\frac{2}{3}\left(x=1\right)\\a=b=c=\frac{-2}{3}\left(x=-1\right)\end{cases}}\)
nhận thấy x=0 không là nghiệm,chia cả 2 vế của PT cho x2
\(PT\Leftrightarrow x^2+ax+b+\dfrac{a}{x}+\dfrac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+a\left(x+\dfrac{1}{x}\right)+b=0\)
đặt \(x+\dfrac{1}{x}=k\Leftrightarrow x^2+\dfrac{1}{x^2}=k^2-2\)
\(PT\Leftrightarrow k^2-2+ak+b=0\)(*)
\(\Leftrightarrow k^2-2=-\left(ak+b\right)\Leftrightarrow\left(k^2-2\right)^2=\left(ak+b\right)^2\)
Áp dụng BĐT bunyakovsky:
\(\left(k^2-2\right)^2=\left(ak+b\right)^2\le\left(a^2+b^2\right)\left(k^2+1\right)\)
\(\Leftrightarrow a^2+b^2\ge\dfrac{\left(k^2-2\right)^2}{k^2+1}\)
Đến đây nếu use phương pháp miền giá trị thì sẽ ra \(a^2+b^2\ge0\).Tuy nhiên lại không tìm được x, có nghĩa là PT vô nghiệm, trái đề bài
để ý ràng \(k=x+\dfrac{1}{x}\ge2\)
\(a^2+b^2\ge\dfrac{\left(k^2-2\right)^2}{k^2+1}=k^2+1+\dfrac{9}{k^2+1}-6\)( chọn điểm rơi k=2)
\(=\left(\dfrac{25}{k^2+1}+k^2+1\right)-\dfrac{16}{k^2+1}-6\)
Áp dụng BĐT AM-GM và \(k\ge2\) ta có:
\(a^2+b^2\ge2.5-\dfrac{16}{5}-6=\dfrac{4}{5}\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}\dfrac{a}{k}=\dfrac{b}{1}\\k=2\\x=1\end{matrix}\right.\)\(\Leftrightarrow a=2b\)
Thế vào PT đầu tìm ra a,b với x=1
P/s: thực ra x phải là \(\pm1\) nhưng a>0 nên chỉ xét x>0