\(3x^2+5y=28\) có ngiệm nguyên (\(x_0;y_0\))...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

1

6 tháng 12 2017

a) Mỗi điểm M xác định một cặp số \(\left(x_0;y_0\right)\). Ngược lại, mỗi cặp số \(\left(x_0;y_0\right)\) xác định một điểm M.

b) Cặp số \(\left(x_0;y_0\right)\) gọi là tọa độ của điểm M, \(x_0\) là hoang độ và \(y_0\)là tung độ của điểm M.

c) Điểm M có tọa độ \(\left(x_0;y_0\right)\) được kí hiệu là M\(\left(x_0;y_0\right)\).

7 tháng 12 2017

a,mỗi điểm M xác định điểm(x0;y0).Ngược lại ,mỗi cặp(x0;y0)xác định điểm M

b,Cặp số(x0;y0) là tọa độ của điểm M;x0 là hoành độ và y0 là tung độ của điểm M

c,Điểm M có tọa độ (x0;y0) được kí hiệu là M(x0;y0)

18 tháng 2 2021

f(x)=f(-x) thì: ax^2+bx+c=ax^2-bx+c do đó: 2bx=0

mà b khác 0 nên: x=0.

17 tháng 9 2018

Với \(x_0\ne0:\)

Nếu \(f\left(x_0\right)=0\Rightarrow ax_0^2+bx_0+c=0\)

Khi đó \(g\left(\frac{1}{x_0}\right)=c\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+b.x_0+ax_0^2}{x^2_0}=0\)

30 tháng 12 2015

chịu..chịu..chịu....tick cho tao đi quỳnh

29 tháng 2 2020

ĐỀ bài em sai nhé

Cho \(f\left(x\right)=ax^{2^{ }}+bx+c\)

suy ra \(f\left(x_0\right)=0\Rightarrow f\left(x_0\right)=ax_0^{2^{ }}+bx_0+c=0\)

\(g\left(x\right)=cx^{2^{ }}+bx+a\Rightarrow g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a\)

\(\Rightarrow g\left(\frac{1}{x_0}\right)=\frac{c}{x_0^2}+\frac{b}{x_0}+a=\frac{c+bx_0+ax^2_0}{x_0^2}=\frac{f\left(x_0\right)}{x_0^2}=0\) (với x0 khác 0)