K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

+) Vectơ  có độ lớn bằng 1 đơn vị, phương song song với trục \(Ox\)và cùng chiều với \(Ox\)

+) Vectơ \(\overrightarrow j \) có độ lớn bằng 1 đơn vị, phương song song với trục \(Oy\)và cùng chiều với \(Oy\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Ta có:  \({\overrightarrow i ^2} = {\left| {\overrightarrow i } \right|^2} = 1;{\overrightarrow j ^2} = {\left| {\overrightarrow j } \right|^2};\overrightarrow i .\overrightarrow j  = 0\)(vì \(\overrightarrow i  \bot \overrightarrow j \) )

b) Ta có: \(\overrightarrow u .\overrightarrow v  = \left( {{x_1}\overrightarrow i  + {y_1}\overrightarrow j } \right).\left( {{x_2}\overrightarrow i  + {y_2}\overrightarrow j } \right) = {x_1}{x_2}.{\overrightarrow i ^2} + {x_1}{y_2}.\left( {\overrightarrow i .\overrightarrow j } \right) + {y_1}{x_2}.\left( {\overrightarrow j .\overrightarrow i } \right) + {y_1}{y_2}.{\overrightarrow j ^2} = {x_1}{x_2} + {y_1}{y_2}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có:

Giá của vectơ \(\overrightarrow {AB} \) là đường thẳng AB

Giá của vectơ \(\overrightarrow {CD} \) là đường thẳng CD.

Dễ thấy: AB // CD do đó hai vectơ này cùng phương.

b) Quan sát hình 42, ta thấy cả hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) cùng hướng sang phải

Như vậy hai vectơ này cùng hướng.

c) Ta có: \(|\overrightarrow {AB} |\; = AB\); \(|\overrightarrow {CD} |\; = CD\) và AB = CD (cùng dài 5 ô vuông)

Vậy độ dài của hai vectơ là bằng nhau.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Do \(\overrightarrow {OA} {\rm{ }} = {\rm{ }}\overrightarrow u \) nên tọa độ vecto \(\overrightarrow {OA}  = \left( {a;b} \right)\). Vậy tọa độ điểm A là: \(A\left( {a;b} \right)\)

b) TỌa độ điểm H là \(H\left( {a;0} \right)\) nên \(\overrightarrow {OH}  = \left( {a;0} \right)\). Do đó, \(\overrightarrow {OH}  = a\overrightarrow i \)

c) TỌa độ điểm K là \(K\left( {0;b} \right)\) nên \(\overrightarrow {OK}  = \left( {0;b} \right)\). Do đó, \(\overrightarrow {OK}  = b\overrightarrow j \)

d) Ta có: \({\rm{ }}\overrightarrow u  = \overrightarrow {OA} {\rm{ }} = \overrightarrow {OH}  + \overrightarrow {OK}  = a\overrightarrow i  + b\overrightarrow j \) (đpcm)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a)

b)  Ta có: Tọa độ các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) lần lượt là: -5; 5

Ta có \(\overrightarrow {AB}  =  - \overrightarrow {CD} \)

Vậy hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) ngược hướng

24 tháng 9 2023

Tham khảo:

a) Trên mặt phẳng tọa độ, lấy các điểm A, B, C sao cho \(\overrightarrow {OA}  = \overrightarrow a ;\;\overrightarrow {OB}  = \overrightarrow b ;\;\overrightarrow {OC}  = \overrightarrow u \)

Trên hệ trục Oxy với các vectơ đơn vị \(\overrightarrow i  = \overrightarrow a ,\;\overrightarrow j  = \overrightarrow b \), lấy M, N là hình chiếu của C trên Ox, Oy.

Gọi tọa độ của \(\overrightarrow u \)là \(\left( {x;y} \right)\). Đặt \(\alpha  = \left( {\overrightarrow u ,\overrightarrow a } \right)\).

+) Nếu \({0^o} < \alpha  < {90^o}\): \(x = OM = \;|\overrightarrow u |.\cos \alpha  = \;|\overrightarrow u |.\cos \alpha .\;|\overrightarrow a |\; = \overrightarrow u \,.\,\overrightarrow a \,;\)

 

+) Nếu \({90^o} < \alpha  < {180^o}\): \(x =  - OM = \; - |\overrightarrow u |.\cos ({180^o} - \alpha ) = \;|\overrightarrow u |.\cos \alpha \; = \overrightarrow u \,.\,\overrightarrow a \,;\)

 

Như vậy ta luôn có: \(x = \overrightarrow u .\overrightarrow a \)

Chứng minh tương tự, ta có: \(y = \overrightarrow u .\overrightarrow b \)

Vậy vectơ \(\overrightarrow u \) có tọa độ là \((\overrightarrow u \,.\,\overrightarrow a \,;\,\overrightarrow u \,.\,\overrightarrow b )\)

b) Trong hệ trục Oxy với các vectơ vectơ đơn vị \(\overrightarrow i  = \overrightarrow a ,\;\overrightarrow j  = \overrightarrow b \), vectơ \(\overrightarrow u \) có tọa độ là \((\overrightarrow u \,.\,\overrightarrow a \,;\,\overrightarrow u \,.\,\overrightarrow b )\)

\(\begin{array}{l} \Rightarrow \overrightarrow u  = (\overrightarrow u \,.\,\overrightarrow a \,).\overrightarrow i  + (\,\overrightarrow u \,.\,\overrightarrow b ).\overrightarrow j \\ \Leftrightarrow \overrightarrow u  = (\overrightarrow u \,.\,\overrightarrow a \,).\overrightarrow a  + (\,\overrightarrow u \,.\,\overrightarrow b ).\overrightarrow b \end{array}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Vì P là hình chiếu vuông góc của M trên Ox nên điểm P biểu diễn hoành độ của điểm M là số \({x_o}\)

Ta có: vectơ \(\overrightarrow {OP} \) cùng phương, cùng hướng với \(\overrightarrow i \) và \(\left| {\overrightarrow {OP} } \right| = {x_o} = {x_o}.\left| {\overrightarrow i } \right|\)

\( \Rightarrow \overrightarrow {OP}  = {x_o}.\;\overrightarrow i \).

b) Vì Q là hình chiếu vuông góc của M trên Oy nên điểm Q biểu diễn tung độ của điểm M là số \({y_o}\)

Ta có: vectơ \(\overrightarrow {OQ} \) cùng phương, cùng hướng với \(\overrightarrow j \) và \(\left| {\overrightarrow {OQ} } \right| = {y_o} = {y_o}.\left| {\overrightarrow j } \right|\)

\( \Rightarrow \overrightarrow {OQ}  = {y_o}.\;\overrightarrow j \).

c) Ta có: \(\overrightarrow {OM}  = OM\).

Mà \(O{M^2} = O{P^2} + M{P^2} = O{P^2} + O{Q^2} = {x_o}^2 + {y_o}^2\)

\( \Rightarrow \left| {\overrightarrow {OM} } \right| = \sqrt {{x_o}^2 + {y_o}^2} \)

d) Ta có: Tứ giác OPMQ là hình chữ nhật, cũng là hình bình hành  nên \(\overrightarrow {OM}  = \overrightarrow {OP}  + \overrightarrow {OQ} \)

\( \Rightarrow \overrightarrow {OM}  = {x_o}.\;\overrightarrow i  + {y_o}.\;\overrightarrow j \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Dễ thấy:

vectơ \(\overrightarrow {OM} \) cùng hướng với vectơ \(\overrightarrow i \) và \(\left| {\overrightarrow {OM} } \right| = 4 = 4\left| {\overrightarrow i } \right|\)

Do đó: \(\overrightarrow {OM}  = 4\,.\,\overrightarrow i \)

Tương tự, vectơ \(\overrightarrow {ON} \) ngược hướng với vectơ \(\overrightarrow i \) và \(\left| {\overrightarrow {ON} } \right| = \frac{3}{2} = \frac{3}{2}\left| {\overrightarrow i } \right|\)

Do đó: \(\overrightarrow {ON}  =  - \frac{3}{2}\,.\,\overrightarrow i \)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có:  giá của \(\overrightarrow {AB} \) là đường thẳng AB, giá của \(\overrightarrow {CD} \)là đường thẳng CD, và thấy rằng 2 đường thẳng này trùng nhau suy ra giá của 2 vecto này trùng nhau.

Tương tự ta thấy giá của cặp \(\overrightarrow {PQ} \) và \(\overrightarrow {RS} \) song song với nhau.

30 tháng 3 2017

a)

b) Đáp số: = 3; = -5. Từ đây ta có = 3, = -5 và suy ra = - => là hai vectơ ngược hướng.