Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm câu a thôi nha
a) Giả sử tồn tại n thuộc N sao cho n2 +3n+5 chia hết cho 121
=>(n2 +3n+5) chia het cho 121 =>4(n2+3n+5) chia hét cho 121
=> (2n+3)2 +11 chia hết cho 121 (*)
=> 4(n2+3n+5) chia hết cho 11 => (2n+3)2 +11 chia hết cho 11
=>(2n+3)2 chia hết cho 11; vì 11 là số nguyên tố => (2n+3)2 chia hết cho 121 (**)
Từ (*) và (**) => 11 chia hết cho 121 ( vô lí) => Điều giả sử là sai
=> A không chia hết cho 121
B,C làm tương tự nhé
Làm lại:
b) Ta có: B = n2 + 3n + 4 = n2 - 2n + 5n - 10 + 14 = (n - 2)(n + 5) + 14
Mà (n + 5) - (n - 2) = 7 => n - 2 và n + 5 cùng chia hết cho 7 hoặc không cùng chia hết cho 7.
+ Xét n + 5 và n - 2 cùng chia hết cho 7 thì (n - 2)(n + 5) chia hết cho 49 mà 14 không chia hết cho 49 nên B không chia hết cho 49.
+ Xét n + 5 và n - 2 không cùng chia hết cho 7 thì (n - 2)(n + 5) không chia hết cho 7 mà 14 chia hết cho 7 nên B không chia hết cho 49.
Vậy, n2 + 3n + 4 không chia hết cho 49.
Lấy biểu thức A chia cho n-5
ta được số dư là 3 để A chia hết cho n-5 thì n-5 E Ứ(3)
=> n-5 E {-1;-3;1;3}
=> n E {-6;-7;-4;-2}
bn shitbo oy, mk ko bk bn lm tek nào mak ra kq ý, nhưng mk lại lm ra #, mong bn xem lại !!! :)
...
ta có: A = n^4 - 5n^3 - 3n^2 + 17n + 13 chia hết cho n - 5
=> n^4 - 5n^3 - 3n^2 + 15n + 2n - 10 + 23 chia hết cho n - 5
n^3.(n-5) - 3n.(n-5) + 2.(n-5) + 23 chia hết cho n - 5
(n-5).(n^3 - 3n+2) + 23 chia hết cho n - 5
mà (n-5).(n^3 - 3n+2) chia hết cho n - 5
=> 23 chia hết cho n - 5
=>...
bn tự làm tiếp nha
Ta có:
\(2n^2+5n-1⋮2n-1\)
\(\Rightarrow n\left(2n-1\right)+3\left(2n-1\right)+2⋮2n-1\)
\(\Rightarrow2⋮2n-1\)
Do \(n\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\Rightarrow2n\in\left\{0;2;-1;3\right\}\)
Mà \(n\in Z\Rightarrow n\in\left\{0;1\right\}\)