Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.
c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.
d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"
Đây là mệnh đề sai vì với x= ta có :
3 =+1
\(\exists x\in R,x\le-2\Rightarrow x^2\le4\)
\(\exists x\in R,x\le2\Rightarrow x^2\le4\)
\(\exists x\in R,x^2\le4\Rightarrow x\le2\)
Cậu giúp mình xác định tính đúng sai của mệnh đề này với nha
Lập mệnh đề phủ định của các mệnh đề sau:
a) \(\forall x\in R,x>-2\Rightarrow x^2>4\)
b) \(\forall x\in R,x>2\Rightarrow x^2>4\)
c) \(\forall x\in R,x^2>4\Rightarrow x>2\)
d) \(\forall x\in N,x>2\Leftrightarrow x^2>4\)
Cảm on nhiều ạ
\(x^4=3x^2+4x+3\Leftrightarrow x^4-2x^2+1=x^2+4x+4\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=x+2\\x^2-1=-x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-3=0\\x^2+x+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{1\pm\sqrt{13}}{2}\)
Vì vậy mệnh đề "\(\exists x\in\mathbb{R},x^4=3x^2+4x+3\)" là mệnh đề đúng.
+) ta có : \(x^4=3x^2+4x+3\Leftrightarrow x^4-3x^2-4x-3=0\)
\(\Leftrightarrow x^4-x^3-3x^2+x^3-x^2-3x+x^2-x-3=0\)
\(\Leftrightarrow x^2\left(x^2-x-3\right)+x\left(x^2-x-3\right)+\left(x^2-x-3\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x-3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{13}}{2}\\x=\dfrac{1+\sqrt{13}}{2}\end{matrix}\right.\)
\(\Rightarrow\exists x\in R,x^4=3x^2+4x+3\) \(\Rightarrow\) mệnh đề ở trên đúng
+) mệnh đề phủ định : \(\forall x\in R,x^4\ne3x^2+4x+3\)
đề có sai o bn
đề phải là : xét tính đúng sai của mệnh đề và lập mệnh đề phủ định của nó.
∀n∈N; n2 + 1 không chia hết cho 4 mới đúng chứ .
\(\overline{P}:"\exists x\in R:x^2-x+3\le0"\)
Mệnh đề \(\overline{P}\) sai vì \(x^2-x+3=\left(x-\frac{1}{2}\right)^2+\frac{11}{4}>0\) \(\forall x\in R\)
\(\exists x\in Q;3x^2-10x+3\ne0\)