Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a/b = c/d => a^2/b^2 = c^2/d^2
Áp dụng tính chất của dãy tỉ số = nhau ta có:
a/b = c/d = a+c/b+d => a^2/b^2 =c^2/d^2 = (a+c/b+d)^2 (1)
a^2/b^2 = c^2/d^2 = a^2+c^2/b^2+d^2 (2)
Từ (1) và (2) => a^2+c^2/b^2+d^2 = (a+c/b+d)^2 (đpcm)
Vì \(\frac{a}{b}=\frac{c}{d}\)=>\(\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{ac}{bd}\)hay \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{2ac}{2bd}\)
Aps dụng tính chất dãy tỉ số = nhau ta có:
\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+2ac+c^2}{b^2+2bd+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\left(\frac{a+c}{b+d}\right)^2\)
=>đpcm
Áp dụng tính chất tỉ lệ thức, ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
=> ĐPCM
đặt a/b=c/d=k =>a=bk;c=dk
A)thay a và c vào (3a+2c)/(3b+2d)và (-5a+3c)/(-5b+3d)
+)(3bk+2dk)/(3b+2d)=k
+)(-5bk+3dk)/(-5b+3d)=k
vậy.....................................................................................................
B)thay a=bk;c=dk vào 2 biểu trên ta có
+)(bk-b)/b=k-1
+)(dk-d)/d=k-1
(bạn sai đề bài r chỗ a-d thành a-b)
Câu hỏi của Nguyễn Nguyên Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
Từ \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)(1)
Từ \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)(2)
Từ (1) và (2) \(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}=\left(\frac{a}{b}\right)^3\left(đpcm\right)\)
Chứng minh nếu \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
Thì a + b + c + d = 0
Hoặc a = c
Giúp mình với ^_^
ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
=>(a+b)(a+d)=(b+c)(c+d)
=> a2 + ab+ad+bd=bc+c2+bd+cd
=>a2+ab+ad-bc-c2-cd=0
=>(a2-c2)+(ad-cd)+(ab-bc)=0
=>(a-c)(a+c)+d(a-c)+b(a-c)=0
=>(a-c)(a+b+c+d)=0
\(\rightarrow\orbr{\begin{cases}a-c=0\rightarrow a=c\\a+b+c+d=0\end{cases}}\)(đpcm)
Vậy...
chúc bn hc tốt
Ta có : a+b/b+c=c+d/d+a
=> (a+b)/(c+d) = (b+c)/(d+a)
=> (a+b)/(c+d)+1=(b+c)/(d+a)+1
hay (a+b+c+d)/(c+d)=(b+c+d+a)/(d+a)
*TH1 a+b+c+d khác 0 thì c+d=d+a => a=c (1)
*TH2 a+b+c+d=0 (2)
Từ (1) và (2) => a+b+c+d=0 và a=c (đpcm)
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\) (dãy tỉ số bằng nhau)
\(\Rightarrow\frac{a+b}{a+c}=1\Leftrightarrow a+b=b+c\Rightarrow a=c\)(đpcm)
Chúc em may mắn :Đ
Ta có: \(\frac{a+b}{c+d}=\frac{b+c}{d+a}\Rightarrow\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
Áp dụng dãy tỉ số bằng nhau:
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> \(a+b=b+c\Rightarrow a=c\)