Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)
Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách
Tổng cộng: \(4.A_6^4\) cách
2.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
a.
Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách
Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách
\(\Rightarrow A_6^4-A_5^3=300\) số
b.
Để số được lập là số chẵn \(\Rightarrow\) d chẵn
TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Tổng cộng: \(A_5^3+96=156\) số
Xác suất \(P=\dfrac{156}{300}=...\)
a: có thể lập được 1*2*3*4=24(số)
b: Tổng là:
1234+1243+1324+1342+1423+1432+2134+2143
+2314+2341+2431+2413+3124+3142+3241+3214
+3412+3421+4123+4132+4312+4321+4213+4231
=66660
a) ĐS: 4 số.
b) Số tự nhiên cần lập có dạng , với a, b ∈ {1, 2, 3, 4} có kể đến thứ tự.
Để lập được số tự nhiên này, phải thực hiện liên tiếp hai hành động sau đây:
Hành động 1: Chọn chữ số a ở hàng chục. Có 4 cách để thực hiện hành động này
Hành động 2: Chọn chữ số b ở hàng đơn vị. Có 4 cách để thực hiện hành động này.
Theo quy tắc nhân suy ra số các cách để lập được số tự nhiên kể trên là
4 . 4 = 16 (cách).
Qua trên suy ra từ các chữ số đã cho có thể lập được 16 số tự nhiên có hai chữ số.
c) Số tự nhiên cần lập có dạng , với a, b ∈ {1, 2, 3, 4} và a, b phải khác nhau, có kể đến thứ tự.
Để lập được số tự nhiên này, phải thực hiện liên tiếp hai hành động sau đây:
Hành động 1: Chọn chữ số a ở hàng chục.
Có 4 cách để thực hiện hành động này.
Hành động 2: Chọn chữ số b ở hàng đơn vị, với b khác chữ số a đã chọn.
Có 3 cách để thực hiện hành động này.
Theo quy tắc nhân suy ra từ các cách để lập được số tự nhiên kể trên là:
4 . 3 = 12 (cách).
Qua trên suy ra từ các chữ số đã cho có thể lập được 12 số tự nhiên có hai chữ số khác nhau.
Đáp án B
Sắp xếp 4 số tự nhiên 1, 2, 3, 4 theo thứ tự khác nhau ta sẽ được các số tự nhiên có 4 chữ số khác nhau => Có 4! = 24 số.
Do tổng 6 chữ số trên chia hết cho 3, do đó khi loại đi 2 chữ số để lập thành 1 số có 4 chữ số, thì số đó chia hết cho 3 khi và chỉ khi tổng 2 số bị loại bỏ cũng chia hết cho 3
\(\Rightarrow\) Hai số đó đều chia hết cho 3, hoặc 1 số chia 3 dư 1, một số chia 3 dư 2
TH1: 2 số bị loại đều chia hết cho 3 \(\Rightarrow\) đó là 0 và 3
Hoán vị 4 chữ số còn lại: \(4!\) cách
TH2: 2 số bị loại có 1 số chia 3 dư 1 và 1 số chia 3 dư 2 \(\Rightarrow2.2=4\) cách
Hoán vị 4 chữ số còn lại (và loại trừ trường hợp 0 đứng đầu): \(4!-3!\) cách
Tổng cộng có: \(4!+4.\left(4!-3!\right)=...\) số
Các số có dạng abcd( a<6 và khác 0; a,b,c,d<10)
Từ 7 chữ số: 1 ;2 ;3 ;4; 5; 6; 7
Có 5 cách chọn a( a<6)
Có 7 cách chọn b
Có 7 cách chọn c
có 3 cách chọn d( d =2;4;6)
Mỗi cách ta được 1 số
=> Có số số thỏa mãn đề bài là:
5.7.7.3=735( số)
Đ/s: 735 số
#YH
Đáp án C
Số các số tự nhiên thỏa mãn yêu cầu bài toán là: A 6 4 = 360 số
Đáp án C
Chọn số tự nhiên gồm 4 chữ số trong 6 chữ số có A 6 4 = 360 cách chọn
Lời giải:
a. Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 là:
$5.A^4_6=1800$ (số)
b.
Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 mà không có 7 là:
$5.A^4_5=600$ (số)
Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 và 7 là:
$1800-600=1200$ (số)
Chọn B