Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
h = 3 R =3\(\sqrt{3}\) ( vì đường cao đồng thời là trung tuyens)
mà h =\(\frac{a\sqrt{3}}{2}\)
=> a =\(\frac{6R}{\sqrt{3}}=6\)
=> S =ah/2 =.6.3.\(\sqrt{3}\)/2 = 9 \(\sqrt{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi n, a là số cạnh của đa giác và độ dài mỗi cạnh của đa giác đó thì
\(\frac{n\left(n-3\right)}{2}=90\)
\(\Rightarrow n=15\)
Ta có \(\frac{S_1}{S_2}=\frac{r^2\times3,14}{R^2\times3,14}\)
\(=\frac{\left(\frac{a}{2\tan\frac{\pi}{n}}\right)^2\times3,14}{\left(\frac{a}{2\sin\frac{\pi}{n}}\right)^2\times3,14}=\frac{\sin^2\left(12\right)}{\tan^2\left(12\right)}=0,957\)
![](https://rs.olm.vn/images/avt/0.png?1311)
biết là bằng 9 rồi nhưng mà (Nhập kết quả dưới dạng số thập phân gọn nhất)
tính sao?????
![](https://rs.olm.vn/images/avt/0.png?1311)
Tâm O của đường tròn nội tiếp tam giác đều cũng là giao điểm ba đường trung tuyến, ba đường cao.
Do đó đường cao h=AE=3.OE=3cm.
Trong tam giác đều, h = a√3/2 (a là độ dài mỗi cạnh).
Suy ra Do đó diện tích tam giác ABC là
Ta chọn (D).
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử \(\Delta ABC\)đều ngoại tiếp đường tròn (I), khi đó ta cần tính BC (hoặc AB, AC đều được)
Kẻ đường cao AH của \(\Delta ABC\). Nối B với I.
Ta ngay lập tức có BI là tia phân giác của \(\widehat{ABC}\)(vì I là tâm đường tròn nội tiếp \(\Delta ABC\))
Mà \(\widehat{ABC}=60^0\)(do \(\Delta ABC\)đều) \(\Rightarrow\widehat{IBH}=\frac{60^0}{2}=30^0\)
\(\Delta IBH\)vuông tại H \(\Rightarrow BH=IH.\cot\widehat{IBH}=r.\cot30^0=r\sqrt{3}\)
Mặt khác \(\Delta ABC\)đều có đường cao AH \(\Rightarrow\)AH cũng là trung tuyến \(\Rightarrow\)H là trung điểm BC
\(\Rightarrow BC=2BH=2r\sqrt{3}\)\(\Rightarrow\)Chọn ý thứ ba.