Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\dfrac{P}{Q}=\dfrac{R}{S}\Rightarrow PS=QR\)
\(\Leftrightarrow PS+QS=QR+QS\)
\(\Leftrightarrow S\left(P+Q\right)=Q\left(R+S\right)\)
điều kiện Q,s khác 0 => chia hau vế cho QS
\(\Leftrightarrow\dfrac{S\left(P+Q\right)}{QS}=\dfrac{Q\left(R+S\right)}{QS}\Leftrightarrow\dfrac{\left(P+Q\right)}{Q}=\dfrac{\left(R+S\right)}{S}\) đpcm
Bài 1.
a) Do hai phân thức bằng nhau , ta có :
( x +2)P( x2 - 22) = ( x - 1)Q( x -2)
=( x + 2)P( x - 2)( x + 2) = ( x - 1)Q( x - 2)
Suy ra : P = x - 1 ; Q = ( x + 2)2
b) Do hai phân thức bằng nhau , ta có :
( x + 2)P(x2 - 2x + 1) = ( x - 2)Q( x2 - 1)
= ( x + 2)P( x - 1)2 = ( x - 2)Q( x - 1)( x + 1)
Suy ra : P = ( x - 2)( x + 1) = x2 - x - 2
Q = ( x + 2)( x - 1) = x2 + x + 2
Bài 2. a) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)
Xét : ( P + Q)S= PS + QS = QR + QS = Q( R + S)
-> \(\dfrac{P+Q}{Q}=\dfrac{R+S}{S}\)
b) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)
Xét : ( S - R)P = PS - PR = QR - PR = R( Q - P)
-> \(\dfrac{R-S}{R}=\dfrac{Q-P}{P}\)
- > \(\dfrac{R}{R-S}=\dfrac{P}{Q-P}\)
Bài này lớp 7 thôi mà !
a) Cộng 1 vào 2 vế
b) Nghịch đảo 2 vế,trừ 1 ở 2 vế rồi lại nghịch đảo 2 vế
ta có P/Q = R/S => PS= RQ (1)
P/Q-P = R/S-R => P( S-R) = R(Q-P)
=> PS -PR = RQ-RP
từ (1) => P/Q-P= R/S-R (bn tự kết luận nhé
còn người ta cho Q khác P để Q-P khác 0 vì Q-P là mẫu số và R-S cũng vậy nên S khác R
Ta có:
\(\hept{\begin{cases}ab=q\\a+b=p\end{cases}}\)và \(\hept{\begin{cases}cd=s\\c+d=r\end{cases}}\)
\(M=\frac{2\left(abc+bcd+cda+dab\right)}{p^2+q^2+r^2+s^2}=\frac{2\left(qc+sb+sa+qd\right)}{p^2+q^2+r^2+s^2}\)
\(=\frac{2\left(qr+sp\right)}{p^2+q^2+r^2+s^2}\le\frac{2\left(qr+sp\right)}{2\left(qr+sp\right)}=1\)
Với M = 1 thì \(\hept{\begin{cases}q=r\\p=s\end{cases}}\)
Tới đây thì không biết đi sao nữa :D
thôi bỏ bài này đi cũng được vì chưa tới lúc cần dung phương trình
Ta có Δ RSK ∼ Δ PQM ⇔
Chọn đáp án A.