K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2018

Từ gt=> 10a+b+10b+a là scp=> 11(a+b) là scp=> a+b có dạng 11k^2. Vì 0<a<10,0=<b<10 nên lần lượt thử ta thấy các số ab 56,65 thỏa mãn

8 tháng 11 2018

\(Tacó\)

\(4n-3⋮n+1\Rightarrow4\left(n+1\right)⋮n+1\Rightarrow4n+4⋮n+1\)

\(\Rightarrow4n+4-\left(4n-3\right)⋮n+1\Rightarrow7⋮n+1\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)

\(\Rightarrow n\in\left\{-2;0;6;-8\right\}\)

b, \(K=\frac{2}{3+4n}\)

\(\Rightarrow GTLN\left(K\right)\Leftrightarrow n=0\Rightarrow\frac{2}{3+4n}=\frac{2}{3}\Rightarrow GTLN\left(K\right)=\frac{2}{3}\)

7 tháng 7 2019

n là số tự nhiên nên n có 3 dạng : \(3k+1;3h+2;3l\left(k;h;l\in N\right)\)

\(2005\equiv1\left(mod3\right)\Rightarrow2005^n\equiv1\left(mod3\right)\)=> \(2005^n\)luôn chia 3 dư 1 với mọi số tự nhiên n

+>\(n=3k:n^{2005}⋮3;2005.n⋮3\Rightarrow2005^n+n^{2005}+2005.n⋮3\)dư 1 ( loại )

+>\(n=3k+1:n\equiv1\left(mod3\right)\Leftrightarrow n^{2005}\equiv1\left(mod3\right);2005\equiv1\left(mod3\right)\Leftrightarrow2005.n\equiv1.1=1\left(mod3\right)\)

\(\Rightarrow2005^n+n^{2005}+2005.n\equiv1+1+1=3\left(mod3\right);3⋮3\Rightarrow A⋮3\)( hợp lý -> chọn )

+>\(n=3k+2\Rightarrow n\equiv-1\left(mod3\right)\Leftrightarrow n^{2005}\equiv-1\left(mod3\right);2005\equiv1\left(mod3\right)\Rightarrow2005.n\equiv1.-1=-1\left(mod3\right)\)

\(\Rightarrow2005^n+n^{2005}+2005.n\equiv1+\left(-1\right)+\left(-1\right)=-1\left(mod3\right)\Leftrightarrow A⋮̸3\)( loại )

Vậy n là tất cả các số tự nhiên chia 3 dư 1.

Đỗ Đức Lợi làm thiếu rồi :))

\(A=2005^n+n^{2005}+2005.n⋮3\)

Ta có \(2005\)ko chia hết 3 vì 2005 chia 3 dư 1

=>2005n=3k+1(k\(\in N\))

Xét +) n=3k ta có A =2005n+n2005.n

A=(3k+1+3k+3k):3 dư 1 

=> loại n=3k

+)n=3k+1 ta có A=3k+1+3k+1+3k+1

A=9k+3

A=3(k+1) \(⋮\)3

+)n=3 k+2 Ta có :

A=3k+1+3k+2+3k+2

A=9k +5 :3 dư 2

=>n=3k+2 ( loại )

Với n=3k+1 thì A=3(k+1) chia hết cho 3

15 tháng 6 2018

Bài 1: 

a)

Giả sử a,b đều chia 3 dư 1

=> ab: 3 dư(1.1=1)(Lưu ý: Nếu 2 số chia cùng 1 số đều dư thì Tích 2 số đó chia cho số đó thì dư sẽ là tích của 2 dư 2 số đó)

=> ab -1 sẽ chia hết cho 3 (Cùng số dư khi trừ thì sẽ chia hết cho số đó)

Giả sử a,b đều chia 3 dư 2

=> ab : 3 (dư 2 x 2 = 4) => ab : 3 dư 1( Vì số dư không bao giờ lớn hơn số chia)

=> ab -1 sẽ chia hết cho 3

Vậy thì nếu a,b chia 3 cùng một số dư thì ab - 1 chia hết cho 3

b)

Ta nhận thấy số số 1 mà là số chẵn thì sẽ chia hết cho 11

Ví dụ: 11 : 11 = 1

           1111 : 11 = 101

           111111 : 11 = 10101

,.......

Số số 1 là 2002( là số chằn)

=> Số a chia hết cho 11 => a là hợp số

Bài 2:

Ta có: ab - ba = 10a + b - 10b - a = 9a - 9b =9 x (a - b)

Ta thấy rằng là số sau khi trừ luôn chia hết cho 9 => Số đó là hợp số

=> Không có số nguyên tố ab thỏa mãn điều kiện trên

18 tháng 6 2018

Cảm ơn bạn nha!!

22 tháng 6 2018

\(A=1+3+3^2+...+3^{10}\)

\(3A=3+3^2+...+3^{11}\) 

\(3A-A=3^{11}-1\)

\(2A=3^{11}-1\) 

\(2A+1=3^{11}\)

................

\(\text{A = 1 + 3 + 32 + ... + 310 3A = 3 + 32 + ... + 311 3A − A = 311 − 1 2A = 311 − 1 2A + 1 = 311 .}\)

29 tháng 3 2019

Do n là số nguyên dương nên n có 3 dạng \(3k;3k+1;3k+2\)  với \(k\inℕ^∗\)

Với n=3k Ta có:\(2^n-1=2^{3k}-1=8^k-1^k⋮7\)

Với n=3k+1 ta có:\(2^n-1=2^{3k+1}-1=2\cdot2^{3k}-1=2\cdot8^k-1=2\left(8^k-1\right)+1\) chia 7 dư 1.

Với n=3k+2,ta có:\(2^n-1=2^{3k+2}-1=4\cdot2^{3k}-1=4\cdot8^k-1=4\left(8^k-1\right)+3\) chia 7 dư 3.

Vậy n=3k thì 2n-1 chia hết cho 7.

$$$$Chứng minh 8k-1 chia hết cho 7.(Quy nạp)

Với k=1 ta có 7 chia hết cho 7.(TM)

Giả sử bài toán đúng với k=p khi đó:

\(A_p=8^p+1\) ta cần chứng minh bài toán đúng với n=p+1 tức là \(A_{p+1}=8^{k+1}+1\).Thật vậy!

Ta có:\(A_{p+1}=8^{k+1}-1=8\cdot8^k-1=8\left(8^k-1\right)+7=8\cdot A_k+7⋮7\)

\(\Rightarrow A_{p+1}⋮7\Rightarrowđpcm\)

12 tháng 2 2019

\(\left|2x-27\right|^{2007}+\left(3y+10\right)^{2018}=0\)

Ta  có \(\left|2x-27\right|^{2017}\ge0\forall x;\left(3y+10\right)^{2018}\ge0\forall y\)

\(\Rightarrow\left|2x-27\right|^{2017}+\left(3.y+10\right)^{2018}\ge0\forall x;y\)

\(\Rightarrow\left|2x-17\right|^{2017}+\left(3y+10\right)^{2018}=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-17=0\\3.y+10=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{17}{2}\\y=-\frac{10}{3}\end{cases}}\)

30 tháng 3 2019

2/ Ta có : abcd = (5c + 1 )^2 

Với c = 6 => ( 5c + 1 )^2 = 31^2 = 961 < 1000 

=> c \(\in\left\{7;8;9\right\}\)

Với c = 7 =>( 5c + 1 )^2  = 36^2 = 1296 ( loại ) Vì 9 khác 7 

     c = 8 => ( 5c + 1 )^2  = 41^ 2 = 1681 ( thỏa mãn )

     c = 9 => ( 5c + 1 )^2  = 46^2 = 2116 ( loại ) vì 1 khác 9 

27 tháng 7 2015

2x +1 là số lẻ nên (2x+1)là số chính phương lẻ 

120 < (2x+1)2 < 200 => (2x+1)= 121 ; 169

+) (2x+1)= 121 => 2x + 1= 11 hoặc -11=> x = 5 hoặc x = -6

+) (2x+1)= 169 => 2x + 1 = 13 hoặc 2x + 1= -13 => x = 6 hoặc x = -7

Vậy....

1 tháng 1 2016

nswfhceqohvewoi