Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Từ a- b > a suy ra: a – b + ( -a) > a + (-a) hay – b >0
⇔ b < 0 ( nhân cả 2 vế với -1).
* Từ a + b < b suy ra: a + b + (- b) < b + (-b)
Hay a < 0
Vậy a < 0 và b < 0 .
Do a< b mà 2 > 0 nên 2a < 2b (*)
Cộng cả 2 vế của (*) với 5c ta được: 2a + 5c < 2b + 5c
Áp dụng tính chất: Nếu a > b và c là số bất kì thì a + c > b + c.
Có thể lấy ví dụ để thấy các bất đẳng thức còn lại không đúng. ( bỏ đi)
Đáp án là C.
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$
$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Bài 2:
Áp dụng BĐT Bunhiacopxky:
$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$
$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$
$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$
$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>
Áp dụng tính chất: Nếu a > b và c > d thì a + c > b + d .
Có thể lấy ví dụ để thấy các bất đẳng thức còn lại không đúng. ( bỏ đi)
Đáp án là D.
Áp dụng tính chất: Nếu a > b và c > d thì a + c > b + d , từ đó suy ra a - d > b - c .
Có thể lấy ví dụ để thấy các bất đẳng thức còn lại không đúng. ( bỏ đi)
Đáp án là C.
Lời giải:
$a+2c> b+c$
$\Rightarrow a> b-c$
Không có cơ sở nào để xác định xem biểu BĐT nào đúng.
Do a + 4 c > b + 4c nên : a + 4c + (- 4c) > b + 4c + (-4c) hay a> b.
Nhân cả 2 vế với 6> 0 ta được: 6a > 6b.
Chọn C.