Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p>(=)5=>p có dạng 3k+1;3k+2
xét p=3k+1=>2p+1=2(3k+1)+1=3.2k+2+1=3.(2k+1) chia hết cho 3
=>2p+1 là hợp số(trái đề bài)
=>p=3k+2
=>4p+1=4(3k+2)+1=3.4k+8+1=3.4k+9=3(4k+3) chia hết cho 3
=>4p+1 là hợp số
vậy 4p+1 là hợp số
Bạn xem lại đề nhé , với p lớn hơn hoặc bằng 5 thì 2p rõ ràng không là số nguyên tố.
\(p\ge5\Rightarrow p\) có một trong 2 dạng:\(3k+1;3k+2\left(k\inℕ^∗\right)\)
Với \(p=3k+1\Rightarrow2p+1=2\left(3k+1\right)+1=6k+3=3\left(2k+1\right)⋮3\)
Với \(p=3k+2\Rightarrow4p+1=4\left(3k+2\right)+1=12k+8+1=12k+9⋮3\)
Vậy \(2p+1\) là hợp số
2. a) Nếu n = 3k +1 thì n2 + (3k+1) (3k+1) hay n2 = 3k(3k+1)+ 3k +1.
Rõ ràng n2 chia co 3 dư 1.
Nếu n= 3k+2 thì n2 = (3k+2) (3k+2) hay n2 =3k(3k+2)+ 2 ( 3k + 2)
= 3k (3k+2 ) + 6k +4.
2 số hạngđầu chia hết cho 3, số hạng cuối chia cho 3 dư 1 nên n2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. vậy p2 chia cho 3 duw1 tức là p2 = 3k+1 do đó p2 + 2018 = 3k +1 + 2018 = 3k + 2019 cha hết cho 3. Vậy p2 + 2018 là hợp số
Tớ xin llõi, tớ muốn giúp cậu lắm nhưng tớ chua học, xin lõi nhé!
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.
Vậy 4p+1 là hợp số,
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.
Vậy 4p+1 là hợp số,