\(a=b+c\) thì \(\frac{a^3+b^3}{a^3+c^3}=\frac{a+b}{a+c}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

Chứng minh phải k bạn 

\(\frac{a^3+b^3}{a^3+c^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}\)

Thay a=b+c ta có : \(\frac{\left(b+c+b\right)\left[\left(b+c\right)^2-ab+b^2\right]}{\left(b+c+c\right)\left[\left(b+c\right)^2-ab+b^2\right]}\)

\(\frac{\left(2b+c\right)\left(b^2+2bc+c^2-ab+b^2\right)}{\left(b+2c\right)\left(b^2+2bc+c^2-ab+b^2\right)}\)

Đặt b+c=a lại : \(\frac{2b+c}{b+2c}=\frac{a+b}{b+c}\)\(\Leftrightarrow\frac{\left(a+b\right)\left(2b^2+2bc+c^2-ab\right)}{\left(b+c\right)\left(2b^2+2bc+c^2-ab\right)}\)

\(=\frac{a+b}{b+c}\)

=> đpcm

1 tháng 7 2018

Bạn ơi \(\frac{a+b}{a+c}mà\)chứ đâu phải \(\frac{a+b}{b+c}\)

31 tháng 5 2020

Từ giả thiết ta có: \(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Xét vế trái: \(\frac{a^4+b^4}{ab\left(a^3+b^3\right)}+\frac{b^4+c^4}{bc\left(b^3+c^3\right)}+\frac{c^4+a^4}{ca\left(c^3+a^3\right)}\)\(=\frac{\frac{a^4+b^4}{a^4b^4}}{\frac{ab\left(a^3+b^3\right)}{a^4b^4}}+\frac{\frac{b^4+c^4}{b^4c^4}}{\frac{bc\left(b^3+c^3\right)}{b^4c^4}}+\frac{\frac{c^4+a^4}{c^4a^4}}{\frac{ca\left(c^3+a^3\right)}{c^4a^4}}\)

\(=\frac{\frac{1}{a^4}+\frac{1}{b^4}}{\frac{1}{a^3}+\frac{1}{b^3}}+\frac{\frac{1}{b^4}+\frac{1}{c^4}}{\frac{1}{b^3}+\frac{1}{c^3}}+\frac{\frac{1}{c^4}+\frac{1}{a^4}}{\frac{1}{c^3}+\frac{1}{a^3}}\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\Rightarrow\hept{\begin{cases}x,y,z>0\\x+y+z=1\end{cases}}\)

và ta cần chứng minh \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge1\)

Ta xét BĐT phụ sau: \(\frac{p^4+q^4}{p^3+q^3}\ge\frac{p+q}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(p-q\right)^2\left(p^2+pq+q^2\right)\ge0\)(đúng với mọi số thực p,q)

Áp dụng ta có: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)(1); \(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2}\)(2); \(\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được:

\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{2\left(x+y+z\right)}{2}=1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z = \(\frac{1}{3}\)hay a = b = c = 3

19 tháng 12 2017

nham nha mn, phai  laf 2(a^4+b^4)>=(a+b)(a^3+b^3)

8 tháng 8 2017

Từng ý nhé !!!

\(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{1}{abc}\left(a^3+b^3+c^3\right)\)

\(\frac{1}{abc}.3abc=3\)

8 tháng 8 2017

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

Xét \(a+b+c=0\) ta có :\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

\(Q=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b+c\right)\left(b-c\right)-a^2}+\frac{c^2}{\left(c+a\right)\left(c-a\right)-b^2}\)

\(=\frac{a^2}{-ac+bc-c^2}+\frac{b^2}{-ab+ac-a^2}+\frac{c^2}{-bc+ab-b^2}\)

\(=\frac{a^2}{-c\left(a+c\right)+bc}+\frac{b^2}{-a\left(a+b\right)+ac}+\frac{c^2}{-b\left(c+b\right)+ab}\)

\(=\frac{a^2}{bc+bc}+\frac{b^2}{ac+ac}+\frac{c^2}{ab+ab}\)

\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{1}{2abc}\left(a^3+b^3+c^3\right)=\frac{1}{2abc}.3abc=\frac{3}{2}\)

Xét \(a=b=c\) ta có :

\(Q=\frac{a^2}{a^2-a^2-a^2}+\frac{b^2}{b^2-b^2-b^2}+\frac{c^2}{c^2-c^2-c^2}=-1-1-1=-3\)

16 tháng 2 2020

1) Ta có pt : \(4x^2+\frac{1}{x^2}=8x+\frac{4}{x}\)

\(\Leftrightarrow4x^2+4+\frac{1}{x^2}=8x+4+\frac{4}{x}\)

\(\Leftrightarrow\left(2x+\frac{1}{x}\right)^2=4\left(2x+\frac{1}{x}\right)+4\)

\(\Leftrightarrow\left(2x+\frac{1}{x}\right)^2-4\left(2x+\frac{1}{x}\right)+4=8\)

\(\Leftrightarrow\left(2x+\frac{1}{x}-2\right)^2=8\)

Đến đây dễ rồi nhé, chia 2 TH.

Ta có :

 \(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)

\(\Rightarrow2\left(ab+bc+ca\right)=0\)

\(\Rightarrow ab+bc+ca=0\)

\(\Rightarrow\frac{ab+bc+ca}{abc}=0\)

\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}=0\)

\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab\left(\frac{1}{a}+\frac{1}{b}\right)}=-\frac{1}{c^3}\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab\left(-\frac{1}{c}\right)}=0\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{abc}=0\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\) (ĐPCM)

22 tháng 10 2016

Câu 1:

  • Chứng minh a3+b3+c3=3abc thì a+b+c=0

\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow0=0\) Đúng (Đpcm)

  • Chứng minh a3+b3+c3=3abc thì a=b=c

​Áp dụng Bđt Cô si 3 số ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu = khi a=b=c (Đpcm)

 

 

 

22 tháng 10 2016

Câu 2

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)

Ta có:

\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(=abc\cdot3\cdot\frac{1}{abc}=3\)

6 tháng 7 2016

Trả lời hộ mình đi

8 tháng 6 2018

Đặt P=\(4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+5\left(a^2+b^2+c^2\right)\)

\(=\left(5a^2+\frac{4}{a}\right)+\left(5b^2+\frac{4}{b}\right)+\left(5c^2+\frac{4}{c}\right)\)

Lại có:\(a^3+b^3+c^3=3\)và \(a,b,c>0\)\(\Rightarrow0< a,b,c\le\sqrt[3]{3}\)

Ta chứng minh cho:

\(5x^2+\frac{4}{x}\ge2x^3+7\)với  \(0< x\le\sqrt[3]{3}\)

\(\Leftrightarrow5x^2+\frac{4}{x}-2x^3-7\ge0\)

\(\Leftrightarrow5x^3+4-2x^4-7x\ge0\)

\(\Leftrightarrow2x^4-5x^3+7x-4\le0\)

\(\Leftrightarrow\left(2x^2-x-4\right)\left(x-1\right)^2\le0\)

Nhận thấy \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\2x^2-x-4< 0\forall0< x\le\sqrt[3]{3}\end{cases}}\)\(\Rightarrow5x^2+\frac{4}{x}\ge2x^3+7\)\(\left(1\right)\)

Áp dụng (1).Ta có:

\(P\ge2a^3+7+2b^3+7+2c^3+7\) với \(0< a,b,c\le\sqrt[3]{3}\)

\(\Leftrightarrow P\ge2\left(a^2+b^2+c^2\right)+21\)

\(\Leftrightarrow P\ge27\) Do:\(a^3+b^3+c^3=3\)\(\left(đpcm\right)\)

Dấu = xảy ra khi:

\(a=b=c=1\)

5 tháng 6 2018

Đặt \(a+b+c=t\)  ta có \(a+b+c\le3\)

Đặt \(P=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{3}{2}\left(a+b+c\right)\)

\(\Leftrightarrow2P\ge\frac{18}{a+b+c}+3\left(a+b+c\right)=\frac{18}{t}+3t\)

ĐẾn đây nhóm thế nào hả ad

5 tháng 6 2018

Do \(a;b;c>0\) và \(a^2+b^2+c^2=3\)

\(\Rightarrow0< a;b;c< \sqrt{3}\)

Ta cần CM: \(\frac{1}{a}+\frac{3}{2}a\ge\frac{a^2+9}{4}\)

Hay \(\frac{\left(a-1\right)^2\left(4-a\right)}{4a}\ge0\) Dúng do \(0>a< \sqrt{3}\)

Tương tự cộng lại ta được BđT cần cm