Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1)
a) Nếu AB = AC
=> ∆ABC cân tại A
=> ABC = ACB
Mà AM = AN
=> MB = NC
Xét ∆MCB và ∆NBC ta có :
MB = MC(cmt)
ABC = ACB (cmt)
BC chung
=> ∆MCB = ∆NBC (cgc)
=> MC = NB (dpcm)
1> B C A M N
( Thông cảm tỉ lệ :P)
+ Nếu AB = AC :
Xét \(\Delta ABN\)và \(\Delta ACM\)có : \(\hept{\begin{cases}AN=AM\left(gt\right)\\\widehat{A}chung\\AB=AC\end{cases}}\)
=> \(\Delta ABN\)= \(\Delta ACM\)(c-g-c)
=> BN = CM ( hai cạnh tương ứng)
b) B C A M N D
+ Nếu AB > AC :
Trên cạnh AB lấy D sao cho AD = AC => AD < AB
=> D nằm giữa B và M
+ Cmtt câu a ta có : \(\Delta ADN=\Delta ACM\)
=> DN = CM ( 2 cạnh tương ứng) (1)
+ Vì N nằm giữa A và C => Tia DN nằm giữa 2 tia DA và DC
=> \(\widehat{ADN}< \widehat{ADC}\)
+ Vì AD = AC => tg ADC cân tại A => \(\widehat{ADC}< 90^o\)
=> Góc ADN < 90o mà \(\widehat{ADN}+\widehat{NDB}=180^o\)( 2 góc kề bù)
=> \(\widehat{NDB}>90^o\)
Xét tg NBD có \(\widehat{NDB}>90^o\)=> Cạnh BN lớn nhất => BN > DN (2)
Từ (1) và (2) => BN > CM
Ta có a<b
=>ac<bc (c>0)
=> ac+ ab < bc+ ab
=> a(b+c) < b(a+c)
=> a/b< a+c/b+c(đpc/m)
Do x < y
=> \(\frac{a}{m}< \frac{b}{m}\)
=> \(\frac{a}{m}+\frac{a}{m}< \frac{a}{m}+\frac{b}{m}< \frac{b}{m}+\frac{b}{m}\)
=> \(\frac{2a}{m}< \frac{a+b}{m}< \frac{2b}{m}\)
=> \(\frac{a}{m}< \frac{a+b}{m}:2< \frac{b}{m}\)
=> \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
=> x < z < y
\(\frac{a}{b}< \frac{c}{d}\) => ad < bc
=> ad + ab < bc + ab
=> a(b + d) < b(a + c)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\)
=> ad < bc
=> ad + cd< bc + cd
=> d(a + c) < c(b + d)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\)
=> đccm
b) \(\frac{-1}{3}=\frac{-16}{48}< \frac{-15}{48}\); \(\frac{-14}{48};\frac{-13}{48}\)\(< \frac{-12}{48}=\frac{-1}{4}\)
ok mk nhé!!! 4556577568797902451353466545475678769863513532345634645645745
thì a//c
Áp dụng tính chất
a // b; b // c => a // c
HT