Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nhân cả hai vế với b, ta có đpcm
b) Đề sai
c) Nhân cả hai vế với b, ta có đpcm
d) Bạn trên đã làm r , mình k trình bày lại nữa
d,
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\) \(a=k\times b\) ; \(c=k\times d\)
Ta có :
\(\frac{a^2}{b^2}=\frac{\left(k\times b\right)^2}{b^2}=\frac{k^2\times b^2}{b^2}=k^2\) (1)
\(\frac{c^2}{d^2}=\frac{\left(k\times d\right)^2}{d^2}=\frac{k^2\times d^2}{d^2}=k^2\) (2)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(k\times b\right)^2+\left(k\times d\right)^2}{b^2+d^2}=\frac{k^2\times b^2+k^2\times d^2}{b^2+d^2}=\frac{k^2\times\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (3)
Từ (1) ; (2) và (3) => \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
1
a,Ta có: \(\frac{a^2+b^2}{a^2+c^2}=\frac{bc+b^2}{bc+c^2}=\frac{b\left(c+b\right)}{c\left(c+b\right)}=\frac{b}{c}\)
b, \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{2a}{2c}=\frac{a}{c}\)(1)
Mặt khác: \(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\frac{2b}{2a}=\frac{b}{a}\)(2)
Từ (1);(2)\(\Rightarrow\frac{a}{c}=\frac{b}{a}\Leftrightarrow a^2=bc\)
c, Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{b}=\frac{c}{d}=\frac{m}{n}=\frac{a+c+m}{b+d+n}\)
Ta có : \(a^2=bc\)
\(\Rightarrow\frac{a^2+b^2}{a^2+c^2}=\frac{bc+b^2}{bc+c^2}=\frac{b\left(b+c\right)}{c\left(b+c\right)}=\frac{b}{c}\)(đpcm)
a) Nếu a 3 và b 3 thì tổng a + b chia hết cho 6; 9; .
b) Nếu a 2 và b 4 thì tổng a + b chia hết cho 4; ; 6.
c) Nếu a 6 và b 9 thì tổng a + b chia hết cho 6; ; 9.
a) Nếu a 3 và b 3 thì tổng a + b chia hết cho 6; 9; .
b) Nếu a 2 và b 4 thì tổng a + b chia hết cho 4; 2; 6.
c) Nếu a 6 và b 9 thì tổng a + b chia hết cho 6; 3; 9.
a)=>A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Đặt tổng trong ngoặc là M
=>M=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)\(=1-\frac{1}{50}< 1\)
Khi đó A=1+M (M<1)
Ta có công thức :1+x<2 nếu x<1
=>A<1
Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)
=> A < 1 (đpcm)
giả sử a^2 + b^2 chia hết cho 21
nếu a,b chia 7 dư (1...7)
thì a^2,b^2 chia 7 dư (1;2;4)
thì a^2 + b^2 không có giá trị nào chia hết cho 7
=> a^2 + b^2 chia hết cho 7 <=> a chia hết cho 7 và b cũng chia hết cho 7
=> a^2,b^2 chia hết cho 49
a,b chia 3 dư {1,2}
a^2,b^2 chia 3 dư 1
=> a^2 + b^2 không có giá trị nào chia hết cho 3
=> a và b đều chia hết cho 3
=> a^2 + b^2 chia hết cho 9
=> a^2 + b^2 chia hết cho 21 thì chia hết cho 21^2 = 441
CHÚC EM HỌC TỐT ^_^