Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)(Vì a, b, c > 0)
\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow ab+ac< ab+bc\)
\(\Leftrightarrow ac< bc\)(Đúng vì c > 0 và a < b)
Vậy \(\frac{a}{b}< \frac{a+c}{b+c}\)(đpcm)
Trả lời:
Ta có:
\(\frac{a}{b}< \frac{a+c}{b+c}\)
⇔ a(b + c) < (a + c)b
(vì a > 0, b > 0 và c > 0 ⇔ b + c > 0 và a + c > 0)
⇔ ab + ac < ab + bc
⇔ ac < bc ⇔ a < b (luôn đúng, theo gt)
a)Do bd>0 (do b>0, d>0) nên nếu \(\frac{a}{b}< \frac{c}{d}\) thì ad<bc
b)Ngược lại, nếu ad<bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)
\(VT=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+c+b}+\frac{c+b}{c+a+b}=2=VT\)
Với a,b,c>0 ta có: \(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+\left(b+c\right)}{2}}=\frac{2a}{a+b+c}\) (áp dụng \(\sqrt{xy}\le\frac{x+y}{2}\))
Tương tự: \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
Cộng 3 bđt trên vế với vế, ta được:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b+c\\b=c+a\\c=a+b\end{cases}}\), vô nghiệm vì a,b,c>0
Do đó \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\) (1)
Lại có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng lại ta được: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}=2\) (2)
Từ (1) và (2) => đpcm
Ta có:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(>\frac{a+b+c}{a+b+c}=1\left(1\right)\)
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)
\(< \frac{2.\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)
Từ (1) và (2) => đpcm
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{a+c}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a+b+c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>1\)
Ta luôn có phân số \(\frac{m}{n}< \frac{m+z}{n+z}\)với \(m>n>0;z>0\)
\(\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)
\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c+b+c+a+b}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Vậy \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
\(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow ab+ac< ab+bc\)
\(\Leftrightarrow ac< bc\)
\(\Rightarrow a< b\) (đúng)
Vậy \(\frac{a}{b}< \frac{a+c}{b+c}\) (đpcm)
Ta có giả sử \(\frac{a}{b}< \frac{a+c}{b+c}\) ( a,b,c nguyên dương )
(=) \(a.\left(b+c\right)< b.\left(a+c\right)\)
(=) \(ab+ac< ab+bc\)
(=) \(ac< bc\)( Cùng loại cả 2 vế \(ab\))
(=) \(a< b\)(Loại bỏ 2 vế \(c\))
Điều \(a< b\)đúng vì theo đề bài
Vì điều \(a< b\)đúng
(=) \(\frac{a}{b}< \frac{a+c}{b+c}\)với a>0,b>0,c>0 và a<b (đpcm)