\(50x^2+25x-3=\left(Ax+B\right)\left(Cx+D\right)\) và \(D=-1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2017

(Ax+B)(Cx+D)=\(ACx^2+\left(BC-A\right)x-B=50x^2+25x-3\)

Như vậy: \(\hept{\begin{cases}AC=50\\BC-A=25\\B=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}A=5\\B=3\\C=10\end{cases}}\)Thay số vào P được P=1

12 tháng 2 2017

Ta có :

\(\left(Ax+B\right)\left(Cx+d\right)=ACx^2+\left(BC+AD\right)x+BD\)

\(=50x^2+25x-3\)

Mà D=-1=>B=3 .

Ta có :AC và 3C-A=25=>C=10 và A=5 .

Thay vào \(\left(\frac{10}{5}-3\right)\left(-1\right)^{2017}=-1.-1=1\)

12 tháng 2 2017

P=1

11 tháng 2 2017

Làm theo cách phân tích con này không đơn giản

(violypic cần nhanh nữa)

Cách Phân phối:

\(\left(ax+b\right)\left(cx+d\right)=acx^2+\left(bc+ad\right)x+bd\)

d=-1=> b=3

ac=50 và 3c-a=25 => c=10 và a=5

Thay vào \(\left(\frac{10}{5}-3\right).\left(-1\right)^{2017}=-1.-1=1\)

11 tháng 2 2017

1

15 tháng 5 2018

\(50x^2+25x-3=50x^2+30x-5x-3=\left(10x-1\right)\left(5x+3\right)=\left(Cx+D\right)\left(Ax+B\right)\)

Vì \(D=-1\)nên ta có \(C=10;A=5;B=3\)

Do đó \(P=\left(\frac{C}{A}-B\right)\cdot D^{2017}=-1\cdot\left(\frac{10}{5}-3\right)=-1\cdot-1=1\)

10 tháng 2 2017

\(\left(Ax+B\right)\left(Cx+D\right)=A.C.x^2+\left(B.C+A.D\right)x+AD=50x^2+25x-3\)

\(\hept{\begin{cases}A.C=50\\B.C+A.D=25\\A.D=-3\end{cases}}\)do D=-1 ta tính được\(\hept{\begin{cases}A=3\\B=\frac{42}{25}\\C=\frac{50}{3}\end{cases}}\)

\(\left(\frac{C}{A}-B\right)D^{2017}=-\frac{827}{225}\)

11 tháng 2 2017

kết quả là 1

Chắc chắn 100%

Cho một biểu thức, biết biểu thức là:\(\left[\left(a+b\right)^3+\left(c-d\right)^3-\left(a+c\right)^3-\left(b-d\right)^3\right]\left(mn\right)^2=63504.\)Các số cần tìm cho, biết:- TRC của 4 số a, b, c, d là 4,5. TRC của 2 số a và c là 5. a hơn c 2 đơn vị, d bằng \(\frac{1}{2}b\).- TRC của 4 số a, b, m, n là 5. Biết \(\frac{m}{a+c}=0,7\), tổng của a và b là a + b, tổng của m và n là \(\left(a+b\right)\frac{10-1}{10+1}\).a) Tìm a, b,...
Đọc tiếp

Cho một biểu thức, biết biểu thức là:

\(\left[\left(a+b\right)^3+\left(c-d\right)^3-\left(a+c\right)^3-\left(b-d\right)^3\right]\left(mn\right)^2=63504.\)

Các số cần tìm cho, biết:

- TRC của 4 số a, b, c, d là 4,5. TRC của 2 số a và c là 5. a hơn c 2 đơn vị, d bằng \(\frac{1}{2}b\).

- TRC của 4 số a, b, m, n là 5. Biết \(\frac{m}{a+c}=0,7\), tổng của a và b là a + b, tổng của m và n là \(\left(a+b\right)\frac{10-1}{10+1}\).

a) Tìm a, b, c, d, m và n.

b) Nếu thêm p vào bên phải của biểu thức, biết \(p\ne0\)và ở giữa p có 16 số chẵn, nhưng các số chẵn ≈ 7 ; 8. Các số chẵn chia hết cho 5. Tính giá trị của biểu thức mới.

c) Tính:

 \(am^2\left(5^3+abcd-\left(ab^2-cd^2\right)\right)+\left(\sqrt{\left(m+1\right)^{2c}}-\sqrt{\left(50c\right)^c\times2n}\right)..\)

d) Tính giá trị của X, biết rằng:

\(X=9ab-9cd+9mn+...+\frac{9mn}{8}.\)

Chứng minh rằng: \(X⋮45\)và giá trị của ... là số có tử số của số đó bé hơn tử số của số \(\frac{975}{4}\)là Y. Biết rằng:

\(Y=\frac{15-1}{15+1}\left(d^d-\frac{d}{m}\right)n\sqrt{c}.\)

 

0
25 tháng 2 2021

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{c+a+b}=1\)

Do đó: \(\frac{a+b-c}{c}=1\)\(\Rightarrow a+b-c=c\)\(\Rightarrow a+b+c=3c\)  (1)

\(\frac{b+c-a}{a}=1\)\(\Rightarrow b+c-a=a\)\(\Rightarrow b+c+a=3a\) (2)

\(\frac{a+c-b}{b}=1\)\(\Rightarrow a+c-b=b\)\(\Rightarrow a+c+b=3b\) (3)

Từ (1), (2), (3) \(\Rightarrow3a=3b=3c\)\(\Rightarrow a=b=c\)

Ta có: \(T=\left(10+\frac{b}{a}\right)\left(4+\frac{2c}{b}\right)\left(2017+\frac{3a}{c}\right)\)

\(=\left(10+\frac{a}{a}\right)\left(4+\frac{2c}{c}\right)\left(2017+\frac{3a}{a}\right)\)

\(=\left(10+1\right)\left(4+2\right)\left(2017+3\right)\)

\(=11.6.2020=133320\)

p/s: làm thế này đúng không ta, mình hong chắc lắm