K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử nếu làm riêng thì người thứ nhất hoàn thành công việc trong x giờ, người thứ hai trong y giờ. Điều kiện x > 0, y > 0.

Trong 1 giờ người thứ nhất làm được 1/x công việc, người thứ hai 1/y công việc, cả hai người cùng làm chung thì được 1/8 công việc.

Ta được : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\)

Trong 3 giờ, người thứ nhất làm được 3/x công việc, trong 4 giờ người thứ hai làm được 4/y công việc, cả hai người làm được 4/5 công việc

Ta được\(\frac{3}{x}+\frac{4}{x}=\frac{4}{5}\)

Ta có hệ phương trình : \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\\\frac{3}{x}+\frac{4}{x}=\frac{5}{4}\end{cases}}\)

Giải ra ta được x = \(\frac{35}{4}\), y = \(\frac{280}{3}\)

Vậy người thứ nhất 35/4 giờ, người thứ hai 280/3 giờ.