Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) P = 2x2 - x4 + 2
= -x4 + 2x2 + 2
Đặt t = x2 ( t ≥ 0 )
Khi đó P trở thành :
-t2 + 2t + 2
= -t2 + 2t - 1 + 3
= -( t2 - 2t + 1 ) + 3
= -( t - 1 )2 + 3
( t - 1 )2 ≥ 0 ∀ x => -( t - 1 )2 ≤ 0 ∀ x
=> -( t - 1 ) + 3 ≤ 3 ∀ x
Dấu bằng xảy ra <=> t - 1 = 0 => t = 1 ( tmđk )
Với t = 1 => x2 = 1
=> x = ±1
Vậy PMax = 3 với x = ±1
b) Q = x - x2
= -x2 + x
= -( x2 - x )
= -[ x2 - 2.1/2x + (1/2)2 ] + 1/4
= -( x - 1/2 )2 + 1/4
( x - 1/2 )2 ≥ 0 ∀ x => -( x - 1/2 )2 ≤ 0 ∀ x
=> -( x - 1/2 )2 + 1/4 ≤ 1/4 ∀ x
Dấu bằng xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy QMax = 1/4 khi x = 1/2
c) M = 2x - x2 - 2020
= -x2 + 2x - 2020
= -x2 + 2x - 1 - 2019
= -( x2 - 2x + 1 ) - 2019
= -( x - 1 )2 - 2019
( x - 1 )2 ≥ 0 ∀ x => -( x - 1 )2 ≤ 0 ∀ x
=> -( x - 1 )2 - 2019 ≤ -2019 ∀ x
Dấu bằng xảy ra <=> x - 1 = 0 => x = 1
Vậy MMax = -2019 khi x = 1
d) N = 2x - 2x2 - 3
= -2x2 + 2x - 3
= -2( x2 - x + 1/4 ) - 5/2
= -2( x - 1/2 )2 - 5/2
( x - 1/2 )2 ≥ 0 ∀ x => -2( x - 1/2 )2 ≤ 0 ∀ x
=> -2( x - 1/2 )2 - 5/2 ≤ -5/2 ∀ x
Dấu bằng xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy NMax = -5/2 khi x = 1/2
A = x2 + 5x + 7
= ( x2 + 5x + 25/4 ) + 3/4
= ( x + 5/2 )2 + 3/4
\(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2
=> MinA = 3/4 <=> x = -5/2
B = 6x - x2 - 5
= -( x2 - 6x + 9 ) + 4
= -( x - 3 )2 + 4
\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2+4\le4\)
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
=> MaxB = 4 <=> x = 3
C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]
= [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
= ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Đẳng thức xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x = -5
=> MinC = -36 <=> x = 0 hoặc x = -5
các bn giải đc bài nào thì giải giùm mk vs ! mấy bài này năng cao " hóa học đó nha " mai mk thi hóa học nha . giải giúp mk vs
http://dethi.thessc.vn/Exam/28-10-2015-16-12-29-898.pdf
hoặc https://thcs-chuongxa-phutho.violet.vn/present/de-thi-va-dap-an-hs-nang-khieu-hoa-hoc-8-nam-hoc-2012-2013-9681050.html
thx
a, đkxđ:x# 2 , x# -2
b,
A = \(\frac{x+1}{x-2}\)=0
<=> x + 1 = 0
<=> x = -1
c,B=\(\frac{x2}{x^2-4}\)
Mà x= \(-\frac{1}{2}\)
<=> \(\frac{1}{4}:\left(\frac{1}{4}-4\right)\)
<=>\(\frac{1}{4}:\frac{-15}{4}\)
<=>\(\frac{1}{4}.\frac{4}{-15}\)
<=>\(\frac{-1}{15}\)
d, \(A-B=\frac{x+1}{x-2}-\frac{x^2}{x^2-4}\)
\(=\frac{\left(x+1\right)\left(x+2\right)-x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+3x+2-x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x+2}{\left(x-2\right)\left(x+2\right)}\)
Theo đề bài, ta có:
Vì \(x^4+6x^2+25\) chia hết cho \(P\left(x\right)\) \(\Rightarrow\) \(3\left(x^4+6x^2+25\right)\) chia hết cho \(P\left(x\right)\)
và \(3x^4+4x^2+28x+5\) chia hết cho \(P\left(x\right)\)
nên \(\left[3\left(x^4+6x^2+25\right)-\left(3x^4+4x^2+28x+5\right)\right]\) chia hết cho \(P\left(x\right)\)
\(\Leftrightarrow\) \(\left(3x^4+18x^2+75-3x^4-4x^2-28x-5\right)\) chia hết cho \(P\left(x\right)\)
\(\Leftrightarrow\) \(14x^2-28x+70\) chia hết cho \(P\left(x\right)\)
\(\Leftrightarrow\) \(x^4-2x+5\) chia hết cho \(P\left(x\right)\), tức \(x^4-2x+5\) chia hết cho \(x^2+bx+c\) \(\left(\text{*}\right)\)
Mà \(b;\) \(c\) là các số nguyên nên từ \(\left(\text{*}\right)\), suy ra \(b=-2;\) \(c=5\)
Khi đó, \(P\left(1\right)=1^2-2.1+5=4\)
\(a,\)\(đkxđ\Leftrightarrow\)\(\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}}\)\(\Rightarrow x\ne\pm3\)
\(b,\)\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)
\(=\frac{5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{5x-15+3x+9-5x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)
\(c,\)Tại x = 6, ta có :
\(B=\frac{3}{x+3}=\frac{3}{6+3}=\frac{3}{9}=\frac{1}{3}\)
Vậy tại x = 6 thì B = 3
\(d,\)Để \(B\in Z\Rightarrow\frac{3}{x+3}\in Z\Rightarrow x+3\inƯ_3\)
Mà \(Ư_3=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\)TH1 : \(x+3=1\Rightarrow x=-2\)
Th2: \(x+3=-1\Rightarrow x=-4\)
Th3 : \(x+3=3\Rightarrow x=0\)
TH4 \(x+3=-3\Rightarrow x=-6\)
Vậy để \(B\in Z\)thì \(x\in\left\{-6;-4;-2;0\right\}\)
a)Để B đc xác định thì :x+3 khác 0
x-3 khác 0
x^2-9 khác 0
=>x khác -3
x khác 3
b) Kết Qủa BT B là:3/x+3
Chọn D