\(n^4-6n^3+27n^2-54n+32\) chia hết cho 2 với mọi n thuộc z

giúp mk vs chiều ik hk...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

Cách 1:

Ta có:

\(A=n^4-6n^3+27n^2-54n+32=(n^4-n^3)-5n^3+5n^2+22n^2-22n-32n+32\)

\(=n^3(n-1)-5n^2(n-1)+22n(n-1)-32(n-1)\)

\(=(n-1)(n^3-5n^2+22n-32)\)

\(=(n-1)(n^3-2n^2-3n^2+6n+16n-32)\)

\(=(n-1)[n^2(n-2)-3n(n-2)+16(n-2)]\)

\(=(n-1)(n-2)(n^2-3n+16)\)

Ta thấy $(n-1)(n-2)$ là tích 2 số nguyên liên tiếp nên \((n-1)(n-2)\vdots 2\)

\(\Rightarrow A=(n-1)(n-2)(n^2-3n+16)\vdots 2\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

Cách 2:

\(A=n^4-6n^3+27n^2-54n+32\)

\(=(n^4+27n^2)-(6n^3+54n-32)\)

\(=n^2(n^2+27)-2(3n^3+27n-16)\)

Ta thấy \(n^2+27-n^2=27\) lẻ nên $n^2, n^2+27$ khác tính chẵn lẻ

Do đó trong 2 số $n^2$ và $n^2+27$ có 1 số chẵn, 1 số lẻ

\(\Rightarrow n^2(n^2+27)\vdots 2\)

\(2(3n^3+27n-16)\vdots 2\)

Suy ra \(A=n^2(n^2+27)-2(3n^3+27n-16)\vdots 2\)

Ta có đpcm.

14 tháng 10 2018

\(A=n^4-6n^3+27n^2-54n+32\)

\(=\left(n^4-3n^3+16n^2\right)-\left(3n^3-9n^2+48n\right)+\left(2n^2-6n+32\right)\)

\(=n^2\left(n^2-3n+16\right)-3n\left(n^2-3n+16\right)+2\left(n^2-3n+16\right)\)

\(=\left(n^2-3n+2\right)\left(n^2-3n+16\right)\)

\(=\left(n-2\right)\left(n-1\right)\left(n^2-3n+16\right)\)

Nhận thấy:  \(\left(n-2\right)\left(n-1\right)\)là tích 2 số nguyên liên tiếp    \(\left(n\in Z\right)\)

=>  \( \left(n-2\right)\left(n-1\right)\)\(⋮\)\(2\)

=>  A chia hết cho 2

14 tháng 11 2022

\(n^4-6n^3+27n^2-54n+32\)

\(=n^4-n^3-5n^3+5n^2+22n^2-22n+32n-32\)

\(=\left(n-1\right)\left(n^3-5n^2+22n+32\right)\)

\(=\left(n-1\right)\left(n^3-2n^2-3n^2+6n+16n+32\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n^2-3n+16\right)\) chia hếtcho 2

15 tháng 10 2016

chiu

tk nhe

xin do

bye

18 tháng 3 2018

a)Đặt \(A=n^3+6n^2+8n\)

\(A=n\left(n^2+6n+8\right)\)

\(A=n\left(n^2+2n+4n+8\right)\)

\(A=n\left[n\left(n+2\right)+4\left(n+2\right)\right]\)

\(A=n\left(n+2\right)\left(n+4\right)⋮\forall n\) chẵn

b)Đặt \(B=n^4-10n^2+9\)

\(B=n^4-n^2-9n^2+9\)

\(B=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)

\(B=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)⋮384\forall n\) lẻ

6 tháng 6 2017

a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\)\(5⋮5\) (1)

\(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)

Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)

b, \(n^3\left(n^2-7\right)-36n\)

\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)

\(=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)

6 tháng 6 2017

Bn Mai Xuân Phong ơi!Câu a, 5x3hay là 5n3 vậy?

27 tháng 11 2016

Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)

=b(a−1)a(a+1)−a(b−1)b(b+1)

Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6

=> b(a−1)a(a+1);a(b−1)b(b+1)6a3bab36a3b−ab36

 

27 tháng 11 2016

mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha

30 tháng 10 2016

\(n^4+2n^3-n^2-2n\)

\(=n^2\left(n^2-1\right)+2n\left(n^2-1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Tích của 4 số nguyên liên tiếp chia hết cho 24

=> n4 + 2n3 - n2 - 2n chia hết cho 24.

30 tháng 10 2016

\(n^4+2n^3-n^2-2n=n^3\left(n+2\right)-n\left(n+2\right)=n\left(n+2\right)\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Trong \(4\) số tự nhiên liên tiếp có \(2\) số chẵn liên tiếp
Trong hai số chẵn liên tiếp có :
+) Một số chẵn chia hết cho \(2\)
+) Một số chẵn chia hết cho \(4\)

Nên tích \(2\) số chẵn liên tiếp chia hết cho \(8\)
Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(8\)
Ta cũng có : Tích \(3\) số tự nhiên chia hết cho \(3\)
Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)
Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)

Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(24\left(=8.3\right)\)

Hay \(n^4+2n^3-n^2-2n⋮24\forall n\in Z\)