K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

\(n^3+3n^2-n-3\)

\(=\left(n^3-n\right)+\left(3n^2-3\right)\)

\(=n\left(n^2-1\right)+3\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\) 3 số chẵn liên tiếp (đúng với \(n\) lẻ) chia hết cho \(48\)

23 tháng 11 2019

Ta có: \(n^3+3n^2-n-3=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

vì n lẻ nên \(\left(n-1\right)\left(n+1\right)\left(n+3\right)\)là tích 3 số chẵn liên tiếp suy ra chia hết cho 48

14 tháng 8 2019

\(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)

Vì n là số lẻ => \(n-1;n+1;n+3\) là 3 số chẵn liên tiếp

Mà 3 số chẵn liên tiếp luôn \(⋮48\)

\(\Rightarrowđpcm\)

14 tháng 8 2019

\(n^3+3n^2-n-3\)

\(=n^2\times\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\times\left(n^2-1\right)\)

\(=\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)\)

Vì n là số lẻ nên \(n⋮̸2\)

\(\Rightarrow n+3⋮2;n-1⋮2;n+1⋮2\)

\(\Rightarrow\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)⋮48\)

\(\Rightarrow n^3+3n^2-n-3⋮48\)

7 tháng 7 2019

1) Đặt A = n6 - 1 = ( n3 - 1)( n3 + 1) = ( n - 1)( n2 + n + 1)( n +1)(n2 - n + 1)

Nếu n không chia hết cho 7 thì:

Xét nếu n = 7k + 1 thì n - 1 = 7k + 1 - 1 = 7k chia hết cho 7 nên A chia hết cho 7

Nếu n = 7k + 2 thì n2 + n + 1 = (7k + 2)2 + 7k + 2 + 1 = 7(7k2 +3k+1) chia hết cho 7 nên A chia hết cho 7

Tương tự đến trường hợp n = 7k + 6

=> Nếu n không chia hết cho 7 thì n6 - 1 chia hết cho 7

Mà n6 - 1 = (n3 - 1)(n3 + 1)

Do đó: n3 - 1 chia hết cho 7 hoặc n3 - 1 chia hết cho 7

7 tháng 7 2019

3) n(n + 1)(2n + 1)

= n(n + 1)[(n + 2) + (n - 1)]

= n(n + 1)(n + 2) + n(n + 1)(n - 1)

Vì n(n + 1)(n + 2) là tích của ba số tự nhiên liên tiếp

Nên n(n + 1)(n + 2) chia hết cho 6 (1)

Vì n(n + 1)(n - 1) là tích của 3 số tự nhiên liên tiếp

Nên n(n + 1)(n - 1) chia hết cho 6 (2)

Từ (1), (2) => Đpcm

NV
19 tháng 2 2020

\(n^3+3n^2+2n+2016n\)

\(=n\left(n^2+3n+2\right)+2016n\)

\(=n\left(n+1\right)\left(n+2\right)+2016n\)

Do \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 6, và \(2016⋮6\)

\(\Rightarrow\) Biểu thức đã cho chia hết cho 6 với mọi n

19 tháng 2 2020

ban ơi là 2018n mà

11 tháng 9 2020

Bài chỉ chứng minh vế phải chia hết vế trái chứ k tìm n hay a nhé bạn

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Nguyễn Ngọc Phương: Mình đâu có tìm $n,a$ đâu hả bạn? Mình đang chỉ ra TH sai mà???

Chả hạn, chứng minh $n(n+1)(n^2+1)\vdots 5$ thì có nghĩa mọi số tự nhiên/ nguyên $n$ đều phải thỏa mãn. Nhưng chỉ cần có 1 TH $n$ thay vào không đúng nghĩa là đề không đúng rồi.