K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

a.

(-2)4.17.(-3)0.(-5)6.(-12n)

=16.17.1.15625.-1

=(16.15625).[1.(-1)].17

=250000.(-1).17

=4250000

b.3(2x2-7)=33

      2x2-7 =33:3

      2x2-7 =11

      2x2    =11+7

      2x2    =18

        x2    =18:2

        x2    =9

        x2    =\(\left(\pm3^2\right)\) 

\(\Rightarrow\) TH1: x2    =32                     TH2: x2        =(-3)2

\(\Rightarrow\)          x      =3                      \(\Rightarrow\)x          =-3

Vậy x\(\in\left\{3;-3\right\}\)

11 tháng 7 2015

 M=1+3+32+33+...+3118+3119

=(1+3+32)+(33+34+35)+...+(3117+3118+3119)

=(1+3+32)+(33.1+33.3+33.32)+...+(3117.1+3117.3+3117.32)

=(1+3+32)+33.(1+3+32)+...+3117.(1+3+32)

=13+33.13+...+3117.13

=13.1+33.13+...+3117.13

=13.(1+33+3117)

=> M chia hết cho 13 .

Em copy của triều đặng

11 tháng 7 2015

 

 I = 1 + 3 + 3+ 3+ ... + 3119

 =(1+3+32)+(33+34+35)+....+(3117+3118+3119)

=(1+3+32)+(1.33+3.33+32.33)+...(1.3117+3.3117+32.3117)

=13+33.(1+3+32)+...+3117.(1+3+32)

=13.1+33.13+...+3117.13

=13.(1+33+...+3117)

=> I chia hết cho 13

mấy câu kia tương tự

 

 

22 tháng 10 2019

toi ko bt

22 tháng 10 2019

ko bt trả lời làm gì tốn thời gian

13 tháng 8 2019

\(A=3+3^2+3^3+3^4+...+3^{100}\)

\(3A=3^2+3^3+...+3^{101}\)

\(3A-A=\left[3^2+3^3+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)

\(2A=3^{101}-3\)

\(A=\frac{3^{101}-3}{2}\)

Ta lại có : \(2A+3=3^x\)

=> \(2\cdot\frac{3^{101}-3}{2}+3=3^x\)

=> \(3^{101}-3+3=3^x\)

=> 3101 = 3x

=> x = 101

Vậy x = 101

\(3A=3^2+3^3+...+3^{101}\)

\(\Rightarrow2A=3^{101}-3\)

\(\Rightarrow2A+3=3^{101}=3^x\)

\(\Rightarrow x=101\)

6 tháng 3 2019

Câu 1:                      Giải

Ta có :\(\hept{\begin{cases}3^{100}=3^{4.25}=\overline{...1}\\19^{990}=19^{998+2}=19^{247.4}.19^2=\overline{...1}.\overline{...1}=\overline{...1}\end{cases}}\)

\(\Rightarrow3^{100}+19^{990}=\left(...1\right)+\left(...1\right)=\left(...2\right)⋮2\left(đpcm\right)\)

Câu 2 :         Giải

Đặt \(d=\left(12n+1,20n+2\right)\)

\(\Rightarrow\hept{\begin{cases}\left(12n+1\right)⋮d\\\left(30n+2\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[5\left(12n+1\right)\right]⋮d\\\left[2\left(30n+2\right)\right]⋮d\end{cases}}\)

\(\Leftrightarrow\left[5\left(12n+1\right)-2\left(30n+2\right)\right]⋮d\)

hay \(\left[60n+5-60-4\right]⋮d\)

\(\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy \(\frac{12n+1}{30n+2}\) tối giản với mọi n \(\inℤ\)

9 tháng 3 2019

Ta có:3,7,9 nhân lên lũy thừa 4n sẽ có chữ số tận cùng =1

1.

3100+19990=...1+19988.192

                =...1+...1. (...1)

                = ...1+...1

                =...2  chia hết cho 2(số có chữ số tận cùng là chữ số chẵn chia hết cho 2)

2.

Gọi ƯC(12n+1,30n+2)=d

ta có:    12n+1 chia hết cho d=>5(12n+1) chia hết cho d=>60n+5 chia hết cho d                       (1)

             30n+2 chia hết cho d=>2(30n+2) chia hết cho d=>60n+4 chia hết cho d                       (2)

Từ (1) và (2),suy ra:     60n+5-(60n+4) chia hết cho d

                                  60n+5-60n-4 chia hết cho d

                                         5-4       chia hết cho d

                                          1          chia hết cho d  

Ư(1)={1;-1}

=>bất cứ số nguyên n nào cx thích hợp để 12n+1/30n+2 là P/S tối giản!

17 tháng 10 2016

a)n=1;2;3;6

b)>=2